Skip to main content
Log in

Efficient and Mild Synthesis of Pyranopyrimidines Catalyzed by Decorated Multi-walled Carbon Nanotubes Bearing Cobalt, Nickel, and Copper Metals in Water

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The multicomponent reactions (MCRs) produce one compound from three or more reactants. Due to the innumerable combination possibilities of reagents, MCRs are popular because of their simplicity and versatility. In this research, an one-pot three-components reaction was carried out between 1,3-diethyl barbituric acid, malononitrile, and aldehydes in the presence of Cu/Co/Ni/MWCNTs as a recyclable catalyst. This catalyst indicated high catalytic activity with good proficiency and reusability under mild condition. This method proposed numerous materials such as being environmentally amicable in high product yields and short reaction times at ambient temperature. The catalysts were collected and specified by diverse spectroscopic techniques such as; FT-IR, X-ray diffraction, and scanning electron microscopy. After finalizing the reaction, the resulted compounds purified, and identified by the melting points, infrared spectroscopy (FT-IR), and the magnetic resonance of the hydrogen nucleus (1H NMR) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. A. Dömling and I. Ugi (2000). Angew. Chemie Int. Ed. 39, 3168.

    Article  Google Scholar 

  2. G. Shanthi and P. T. Perumal (2009). Tetrahedron Lett. 50, 3959.

    Article  CAS  Google Scholar 

  3. M. Khorasani, and H. Naeimi (2022). Synth. Commun., 1.

  4. C. Hulme and V. Gore (2003). Curr. Med. Chem. 10, 51.

    Article  CAS  PubMed  Google Scholar 

  5. L. Weber, K. Illgen, and M. Almstetter (1999). Synlett. 3, 366.

    Article  Google Scholar 

  6. G. A. Chass, C. J. O’Brien, N. Hadei, E. A. B. Kantchev, W. Mu, D. Fang, A. C. Hopkinson, I. G. Csizmadia, and M. G. Organ (2009). Chem. Eur. J. 15, 4281.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Rajinder, M. Gupta, and J. Kour (2019). J. Iran. Chem. Soc. 16, 1977.

    Article  CAS  Google Scholar 

  8. M. Abasszadeh, S. J. Roudbaraki, and M. Ghashang (2019). Org. Prep. Proced. Int. 51, 255.

    Article  Google Scholar 

  9. G. Brahmachari and K. Nurjamal (2019). Tetrahedron Lett. 60, 1904.

    Article  CAS  Google Scholar 

  10. M. Daraie, M. M. Heravi, and T. Tamoradi (2019). Chem. Select. 4, 10742.

    CAS  Google Scholar 

  11. D. Azarifar, R. Nejat-yami, F. Sameri, and Z. Akrami (2012). Lett. Org. Chem. 98, 435.

    Article  Google Scholar 

  12. J. A. Angulwar, G. S. Khansole, and V. N. Bhosale (2018). Int. J. Chem. Phys. Sci. 7, 2319.

    Google Scholar 

  13. M. C. Bagley, D. D. Hughes, M. C. Lubinu, E. A. Merritt, P. H. Taylor, and N. C. O. Tomkinson (2004). QSAR Comb. Sci. 23, 859.

    Article  CAS  Google Scholar 

  14. M. N. Elinson, A. I. Ilovaisky, V. M. Merkulova, T. A. Zaimovskaya, and G. I. Nikishin (2011). Mendeleev Commun. 21, 122.

    Article  CAS  Google Scholar 

  15. S. Beheshti, V. Safarifard, and A. Morsali (2018). Inorg. Chem. Commun. 94, 80.

    Article  CAS  Google Scholar 

  16. J. A. Valderrama, P. Colonelli, D. Vásquez, M. F. González, J. A. Rodríguez, and C. Theoduloz (2008). Bioorg. Med. Chem. 16, 10172.

    Article  CAS  PubMed  Google Scholar 

  17. M. A. Gonzalez and R. L. Smith (2003). Environ. Prog. 22, 269.

    Article  CAS  Google Scholar 

  18. D. Choudhary, S. Paul, R. Gupta, and J. H. Clark (2006). Green Chem. 8, 479.

    Article  CAS  Google Scholar 

  19. Y. Ono (2003). J. Catal. 216, 406.

    Article  CAS  Google Scholar 

  20. A. Corma, S. B. A. Hamid, S. Iborra, and A. Velty (2005). J. Catal. 234, 340.

    Article  CAS  Google Scholar 

  21. S. Iijima (1993). Mater. Sci. Eng. B. 19, 172.

    Article  Google Scholar 

  22. S. Iijima (1991). Nature. 354, 56.

    Article  CAS  Google Scholar 

  23. H. Naeimi, A. Mohajeri, L. Moradi, and A. M. Rashidi (2009). Appl. Surf. Sci. 256, 631.

    Article  CAS  Google Scholar 

  24. H. Naeimi and M. Dadaei (2015). RSC Adv. 5, 76221.

    Article  CAS  Google Scholar 

  25. P. Mandal and S. C. Mondal (2019). Mater. Manuf. Process. 34, 1326.

    Article  CAS  Google Scholar 

  26. Y. Peng and H. Liu (2006). Ind. Eng. Chem. Res. 45, 6483.

    Article  CAS  Google Scholar 

  27. T. Belin and F. Epron (2005). Mater. Sci. Eng. B. 119, 105.

    Article  Google Scholar 

  28. N. V. Qui, P. Scholz, T. Krech, T. F. Keller, K. Pollok, and B. Ondruschka (2011). Catal. Commun. 12, 464.

    Article  CAS  Google Scholar 

  29. A. Goi and M. Trapido (2001). Sci. Chem. 50, 5.

    CAS  Google Scholar 

  30. L. S. Parreira, R. M. Antoniassi, I. C. Freitas, D. C. de Oliveira, E. V. Spinacé, P. H. C. Camargo, and M. C. dos Santos (2019). Renew. Energy. 143, 1397.

    Article  CAS  Google Scholar 

  31. A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben (1999). Adv. Mater. 11, 1354.

    Article  CAS  Google Scholar 

  32. S. Nagasawa, M. Yudasaka, K. Hirahara, T. Ichihashi, and S. Iijima (2000). Chem. Phys. Lett. 328, 374.

    Article  CAS  Google Scholar 

  33. S. W. Lee, J. Kim, S. Chen, P. T. Hammond, and Y. Shao-Horn (2010). ACS Nano. 4, 3889.

    Article  CAS  PubMed  Google Scholar 

  34. M.-S. Cao, J. Yang, W.-L. Song, D.-Q. Zhang, B. Wen, H.-B. Jin, Z.-L. Hou, and J. Yuan (2012). ACS Appl. Mater. Interfaces. 4, 6949.

    Article  CAS  PubMed  Google Scholar 

  35. X. Zhang, T. V. Sreekumar, T. Liu, and S. Kumar (2004). J. Phys. Chem. B. 108, 16435.

    Article  CAS  Google Scholar 

  36. Y. Gao, S. Tu, T. Li, X. Zhang, S. Zhu, F. Fang, and D. Shi (2004). Synth. Commun. 34, 1295.

    Article  CAS  Google Scholar 

  37. F. Ghayour, M. R. M. Shafiee, and M. Ghashang (2018). Main Gr. Met. Chem. 41, 21.

    CAS  Google Scholar 

  38. A. Khazaei, A. Ranjbaran, F. Abbasi, M. Khazaei, and A. R. Moosavi-Zare (2015). RSC Adv. 5, 13643.

    Article  CAS  Google Scholar 

  39. M. A. Zolfigol, R. Ayazi-Nasrabadi, and S. Baghery (2016). Appl. Organomet. Chem. 30, 273.

    Article  CAS  Google Scholar 

  40. A. R. Moosavi-Zare, H. Goudarziafshar, and Z. Jalilian (2019). Appl. Organomet. Chem. 33 (1), e4584.

    Article  Google Scholar 

  41. S. N. Maddila, S. Maddila, W. E. Van Zyl, and S. B. Jonnalagadda (2015). RSC Adv. 5, 37360.

    Article  CAS  Google Scholar 

  42. J. M. Khurana and K. Vij (2013). Synth. Commun. 43, 2294.

    Article  CAS  Google Scholar 

  43. G. M. Ziarani, S. Faramarzi, S. Asadi, A. Badiei, R. Bazl, and M. Amanlou (2013). DARU J. Pharm. Sci. 21, 3.

    Article  Google Scholar 

  44. A. Khazaei, H. A. A. Nik, and A. R. Moosavi-Zare (2015). J. Chin. Chem. Soc. 62 (8), 675.

    Article  CAS  Google Scholar 

  45. J. M. Khurana, B. Nand, and P. Saluja (2014). J. Heterocycl. Chem. 51 (3), 618.

    Article  CAS  Google Scholar 

  46. M. Bakherad, G. Bagherian, A. Rezaeifard, F. Mosayebi, B. Shokoohi, and A. Keivanloo (2021). J. Iran. Chem. Soc. 18 (4), 839.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Kashan for supporting this work by Grant No. 159148/83.

Funding

Funding was provided by University of Kashan (Grant No. 159148/83).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Naeimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1881 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harooni, N.S., Ghasemi, A.H. & Naeimi, H. Efficient and Mild Synthesis of Pyranopyrimidines Catalyzed by Decorated Multi-walled Carbon Nanotubes Bearing Cobalt, Nickel, and Copper Metals in Water. J Clust Sci 34, 2189–2203 (2023). https://doi.org/10.1007/s10876-022-02374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02374-8

Keywords

Navigation