Skip to main content
Log in

Synthesis of NiO Nanoparticles via Calcination of Surfactant Intercalated Layered Nickel Hydroxides and their Application as Adsorbent

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, NiO nanoparticles have been synthesized using sodium dodecyl sulfate (SDS) intercalated layered nickel hydroxides as precursors. The precursors were synthesized using homogeneous precipitation method. The SDS intercalated layered nickel hydroxide precursors exhibit hierarchical micro-flower like structures consisting of nanosheets and they were converted into NiO nanoparticles via calcination at 400 °C. The SDS intercalated nickel hydroxides and the NiO nanoparticles were characterized using various techniques. The NiO nanoparticles possess small crystallite size, large specific surface area and they retain their original morphology as that of the precursors. The NiO nanoparticles obtained via the calcination of SDS intercalated nickel hydroxides were tested as adsorbent for the removal of congo red from an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. V. H. Grassian (2008). J. Phys. Chem. C 112, 18303.

    Article  CAS  Google Scholar 

  2. Y. Li and W. Shen (2014). Chem. Soc. Rev. 43, 1543.

    Article  PubMed  Google Scholar 

  3. H. Goesmann and C. Feldmann (2010). Angew. Chemie. Int. Ed. 49, 1362.

    Article  CAS  Google Scholar 

  4. M. S. Chavali and M. P. Nikolova (2019). SN Appl. Sci. 1, 607.

    Article  CAS  Google Scholar 

  5. A. Gajewicz, T. Puzyn, B. Rasulev, and D. Leszczynski (2011). Nanosci. Nanotechnol. Asia 1, 53.

    CAS  Google Scholar 

  6. J. Li, L. Xu, J. He, L. Hu, L. Da, and B. Wang (2018). New J. Chem. 42, 10279.

    Article  CAS  Google Scholar 

  7. L. Wang, Z. Lou, T. Fei, and T. Zhang (2012). Sensors Actuators. B Chem. 161, 178.

    CAS  Google Scholar 

  8. J. Adhikary, P. Chakraborty, B. Das, A. Datta, S. K. Dash, S. Roy, J. W. Chen, and T. Chattopadhyay (2015). RSC Adv. 5, 35917.

    Article  CAS  Google Scholar 

  9. K. Xu, R. Zou, W. Li, Q. Liu, T. Wang, J. Yang, Z. Chen, and J. Hu (2013). New J. Chem. 37, 4031.

    Article  CAS  Google Scholar 

  10. B. Cheng, Y. Le, W. Cai, and J. Yu (2011). J. Hazard. Mater. 185, 889.

    Article  CAS  PubMed  Google Scholar 

  11. S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe (2008). J. Phys. Chem. C 112, 16134.

    Article  CAS  Google Scholar 

  12. S. D. Dhas, P. S. Maldar, M. D. Patil, A. B. Nagare, M. R. Waikar, R. G. Sonkawade, and A. V. Moholkar (2020). Vacuum 181, 109646.

    Article  CAS  Google Scholar 

  13. S. K. Meher, P. Justin, and G. R. Rao (2011). ACS Appl. Mater. Interfaces 3, 2063.

    Article  CAS  PubMed  Google Scholar 

  14. S. K. Meher, P. Justin, and G. Ranga Rao (2011). Nanoscale 3, 683.

    Article  CAS  PubMed  Google Scholar 

  15. M. Z. Bani-Fwaz, A. A. El-Zahhar, H. S. M. Abd-Rabboh, M. S. Hamdy, and M. Shkir (2019). Int. J. Environ. Anal. Chem. 101, 1126.

    Article  Google Scholar 

  16. F. Motahari, M. R. Mozdianfard, F. Soofivand, and M. Salavati-Niasari (2014). RSC Adv. 4, 27654.

    Article  CAS  Google Scholar 

  17. M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan (2012). J. Mater. Sci. Mater. Electron 23, 728.

    Article  CAS  Google Scholar 

  18. V. S. Subash, K. Alagumalai, S. M. Chen, R. Shanmugam, and H. J. Shiuan (2020). New J. Chem. 44, 15071.

    Article  CAS  Google Scholar 

  19. M. Salavati-Niasari, N. Mir, and F. Davar (2010). J. Alloys Compd. 493, 163.

    Article  CAS  Google Scholar 

  20. K. Anandan and V. Rajendran (2011). Mater. Sci. Semicond. Process. 14, 43.

    Article  CAS  Google Scholar 

  21. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, and G. Lu (2012). Mater. Lett. 68, 168.

    Article  CAS  Google Scholar 

  22. S. Rakshit, S. Chall, S. S. Mati, A. Roychowdhury, S. P. Moulik, and S. C. Bhattacharya (2013). RSC Adv. 3, 6106.

    Article  CAS  Google Scholar 

  23. M. S. Wu, F. Y. Chen, Y. H. Lai, and Y. J. Sie (2017). Electrochim. Acta 258, 167.

    Article  CAS  Google Scholar 

  24. X. Ge, C. D. Gu, Y. Lu, X. L. Wang, and J. P. Tu (2013). J. Mater. Chem. A. 1, 13454.

    Article  CAS  Google Scholar 

  25. W. Ma, R. Ma, J. Liang, C. Wang, X. Liu, K. Zhou, and T. Sasaki (2014). Nanoscale 6, 13870.

    Article  CAS  PubMed  Google Scholar 

  26. D. Bin Kuang, B. X. Lei, Y. P. Pan, X. Y. Yu, and C. Y. Su (2009). J. Phys. Chem. C 113, 5508.

    Article  Google Scholar 

  27. X. Liu, R. Ma, Y. Bando, and T. Sasaki (2010). Angew. Chemie. Int. Ed. 49, 8253.

    Article  CAS  Google Scholar 

  28. Y. Zhong, G. Chen, X. Liu, D. Zhang, N. Zhang, J. Li, S. Liang, R. Ma, and G. Qiu (2017). Nanoscale 9, 8185.

    Article  CAS  PubMed  Google Scholar 

  29. P. Justin, S. K. Meher, and G. R. Rao (2010). J. Phys. Chem. C 114, 5203.

    Article  CAS  Google Scholar 

  30. M. V. Bukhtiyarova (2019). J. Solid State Chem. 269, 494.

    Article  CAS  Google Scholar 

  31. Q. Wang and D. O’Hare (2012). Chem. Rev. 112, 4124.

    Article  CAS  PubMed  Google Scholar 

  32. H. Yin and Z. Tang (2016). Chem. Soc. Rev. 45, 4873.

    Article  CAS  PubMed  Google Scholar 

  33. D. A. Giarola, P. R. Catarini Da Silva, A. Urbano, F. M. De Oliveira, C. R. Texeira Tarley, and L. H. Dall’Antonia (2014). J. Solid State Electrochem. 18, 497.

    Article  CAS  Google Scholar 

  34. S. Ida, D. Shiga, M. Koinuma, and Y. Matsumoto (2008). J. Am. Chem. Soc. 130, 14038.

    Article  CAS  PubMed  Google Scholar 

  35. W. Xing, F. Li, Z. F. Yan, and G. Q. Lu (2004). J. Power Sources 134, 324.

    Article  CAS  Google Scholar 

  36. X. Liu, R. Ma, Y. Bando, and T. Sasaki (2014). Adv. Funct. Mater. 24, 4292.

    Article  CAS  Google Scholar 

  37. N. Parveen and M. H. Cho (2016). Sci. Rep. 6, 27318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D. Zhang, X. Liu, H. Wan, N. Zhang, S. Liang, R. Ma, and G. Qiu (2017). ACS Sustain. Chem. Eng. 5, 5869.

    Article  CAS  Google Scholar 

  39. L. Wang, C. Shi, L. Pan, X. Zhang, and J. J. Zou (2020). Nanoscale 12, 4790.

    Article  CAS  PubMed  Google Scholar 

  40. L. Li, Y. Dai, Q. Xu, B. Zhang, F. Zhang, Y. You, D. Ma, S. S. Li, and Y. X. Zhang (2021). J. Alloys Compd. 882, 160752.

    Article  CAS  Google Scholar 

  41. M. Y. Cheng and B. J. Hwang (2009). J. Colloid Interface Sci. 337, 265.

    Article  CAS  PubMed  Google Scholar 

  42. J. W. Lee, J. M. Ko, and J. D. Kim (2011). J. Phys. Chem. C 115, 19445.

    Article  CAS  Google Scholar 

  43. X. Liu, R. Ma, Y. Bando, and T. Sasaki (2012). Adv. Mater. 24, 2148.

    Article  CAS  PubMed  Google Scholar 

  44. S. Ci, Z. Wen, Y. Qian, S. Mao, S. Cui, and J. Chen (2015). Sci. Rep. 5, 11919.

    Article  PubMed  PubMed Central  Google Scholar 

  45. J. Yu, S. Pan, Y. Zhang, Q. Liu, and B. Li (2019). Front. Mater. 6, 124.

    Article  Google Scholar 

  46. V. R. L. Constantino and T. J. Pinnavaia (1995). Inorg. Chem. 34, 883.

    Article  CAS  Google Scholar 

  47. R. Tanaka, I. Ogino, and S. R. Mukai (2018). ACS Omega 3, 16916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. U. Kwon, B. Kim, D. C. Nguyen, J. Park, N. Y. Ha, S. Kim, S. H. Ko, S. Lee, D. Lee, and H. J. Park (2016). Sci. Rep. 6, 30759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Chowdhury, A. A. Khan, S. Kumari, and S. Hussain (2019). ACS Sustain. Chem. Eng. 7, 4165.

    Article  CAS  Google Scholar 

  50. S. Baran, A. Hoser, B. Penc, and A. Szytula (2016). Acta Phys. Pol. A 129, 35.

    Article  CAS  Google Scholar 

  51. A. Jafari, S. Pilban Jahromi, K. Boustani, B. T. Goh, and N. M. Huang (2019). J. Magn. Magn. Mater. 469, 383.

    Article  CAS  Google Scholar 

  52. C. Parada and E. Morán (2006). Chem. Mater. 18, 2719.

    Article  CAS  Google Scholar 

  53. D. Nikolić, M. Panjan, G. R. Blake, and M. Tadić (2015). J. Eur. Ceram. Soc. 35, 3843.

    Article  Google Scholar 

  54. J. M. Wesselinowa (2010). J. Magn. Magn. Mater. 322, 234.

    Article  CAS  Google Scholar 

  55. V. Ranga Rao Pulimi and P. Jeevanandam (2009). J. Magn. Magn. Mater. 321, 2556.

    Article  CAS  Google Scholar 

  56. K. Karthik, G. K. Selvan, M. Kanagaraj, S. Arumugam, and N. V. Jaya (2011). J. Alloys Compd. 509, 181.

    Article  CAS  Google Scholar 

  57. M. Arif, A. Sanger, M. Shkir, A. Singh, and R. S. Katiyar (2019). Phys. B Condens. Matter 552, 88.

    Article  CAS  Google Scholar 

  58. M. Iacob, D. Sirbu, C. Tugui, G. Stiubianu, L. Sacarescu, V. Cozan, A. Zeleňáková, E. Čižmár, A. Feher, and M. Cazacu (2015). RSC Adv. 5, 62563.

    Article  CAS  Google Scholar 

  59. G. Sharma and P. Jeevanandam (2013). Microporous Mesoporous Mater. 165, 55.

    Article  CAS  Google Scholar 

  60. J. C. Denardin, A. L. Brandl, M. Knobel, P. Panissod, A. B. Pakhomov, H. Liu, and X. X. Zhang (2002). Phys. Rev. B - Condens. Matter Mater. Phys. 65, 064422.

    Article  Google Scholar 

  61. Y. Cui, C. Wang, S. Wu, G. Liu, F. Zhang, and T. Wang (2011). CrystEngComm 13, 4930.

    Article  CAS  Google Scholar 

  62. M. P. Proenca, C. T. Sousa, A. M. Pereira, P. B. Tavares, J. Ventura, M. Vazquez, and J. P. Araujo (2011). Phys. Chem. Chem. Phys. 13, 9561.

    Article  CAS  PubMed  Google Scholar 

  63. S. Chatterjee, R. Maiti, and D. Chakravorty (2020). RSC Adv. 10, 13708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Y. Bao, M. Qin, Y. Yu, L. Zhang, and H. Wu (2019). J. Phys. Chem. Solids 124, 289.

    Article  CAS  Google Scholar 

  65. S. Chatterjee, N. Guha, S. Krishnan, A. K. Singh, P. Mathur, and D. K. Rai (2020). Sci. Rep. 10, 111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. B. Saha, S. Das, J. Saikia, and G. Das (2011). J. Phys. Chem. C 115, 8024.

    Article  CAS  Google Scholar 

  67. S. Wang, B. Yang, and Y. Liu (2017). J. Colloid Interface Sci. 507, 225.

    Article  CAS  PubMed  Google Scholar 

  68. J. Mahajan and P. Jeevanandam (2021). Mater. Today Commun. 26, 102085.

    Article  CAS  Google Scholar 

  69. X. Ge, C. D. Gu, X. L. Wang, and J. P. Tu (2015). J. Colloid Interface Sci. 438, 149.

    Article  CAS  PubMed  Google Scholar 

  70. X. Ge, C. D. Gu, X. L. Wang, and J. P. Tu (2015). J. Colloid Interface Sci. 454, 134.

    Article  CAS  PubMed  Google Scholar 

  71. J. Zhao, J. Zha, H. Lu, C. Yang, K. Yan, and X. Meng (2016). RSC Adv. 6, 103585.

    Article  CAS  Google Scholar 

  72. Y. Zheng, B. Zhu, H. Chen, W. You, C. Jiang, and J. Yu (2017). J. Colloid Interface Sci. 504, 688.

    Article  CAS  PubMed  Google Scholar 

  73. F. Motahari, M. R. Mozdianfard, and M. Salavati-Niasari (2015). Process Saf. Environ. Prot. 93, 282.

    Article  CAS  Google Scholar 

  74. C. Lei, X. Zhu, B. Zhu, J. Yu, and W. Ho (2016). J. Colloid Interface Sci. 466, 238.

    Article  CAS  PubMed  Google Scholar 

  75. C. Lei, M. Pi, B. Cheng, C. Jiang, and J. Qin (2018). Appl. Surf. Sci. 435, 1002.

    Article  CAS  Google Scholar 

  76. C. Lei, X. Zhu, Y. Le, B. Zhu, J. Yu, and W. Ho (2016). RSC Adv. 6, 10272.

    Article  CAS  Google Scholar 

  77. T. Zhu, J. S. Chen, and X. W. D. Lou (2012). J. Phys. Chem. C 116, 6873.

    Article  CAS  Google Scholar 

  78. L. Ai and Y. Zeng (2013). Chem. Eng. J. 215, 269.

    Article  Google Scholar 

Download references

Acknowledgements

Funding from Council of Scientific and Industrial Research (CSIR), Government of India (project number 01(2941)/18/EMR-II) is acknowledged with gratitude. Pankaj Rana thanks the MHRD and University Grants Commission, Govt. of India, for the award of fellowship (JRF/SRF). The authors are thankful to Institute Instrumentation Centre, IIT Roorkee for providing various instrumental facilities. Thanks are also due to the Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee for providing HRTEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeevanandam.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2226 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, P., Jeevanandam, P. Synthesis of NiO Nanoparticles via Calcination of Surfactant Intercalated Layered Nickel Hydroxides and their Application as Adsorbent. J Clust Sci 34, 517–533 (2023). https://doi.org/10.1007/s10876-022-02237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02237-2

Keywords

Navigation