Skip to main content
Log in

Polyoxometalate Clusters: Inorganic Ligands for Functional Materials

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Research in polyoxometalates (POMs) is a diverse growing field with variations in application. POMs are consisting of metal ion and oxide. Peripheral oxides of POM can share spare electron pairs to behave as ligands. This property of POM was utilized for constructing coordination polymers (CPs), synthesizing transitional metal substituted POM for catalysis, synthesizing and stabilizing nano-particles, etc. POM connected structures have provided an opportunity of heterogenization of some homogeneous POM catalyst. Furthermore, diamagnetic POM ligands have been suitable for stabilizing and isolating magnetic ions inside clusters. The scope of this review is to summarize the role of POMs as ligands to prepare POM based CPs, synthesize and stabilize metal nano-particles and isolate magnetic ion or unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

POM:

Polyoxometalate

MOF:

Metal organic framework

NP:

Nano-particle

CP:

Coordination polymer

1D:

One dimensional

2D:

Two dimensional

3D:

Three dimensional

BTC:

1,3,5-Benzenetricarboxylate

TBA:

Tetrabutyl ammonium cation

HER:

Hydrogen evolution reaction

TEOA:

Triethanolamine

bpy:

2,2´-Bipyridine

µ-ox:

Oxalate

arg:

L-arginine

enMe:

1,2´-Propanediamine

NH2-BPY:

NH2-bipyridine

PYI:

Pyrrolidine-2-yl-imidazole

pyr:

Pyrazole

pzta:

5-(2-Pyrazinyl)tetrazole

btp:

2,6-Bis(1,2,4-triazol-1-yl)pyridine

3-dpyb:

N,N´-bis(3-pyridinecarboxamide)-1,4-butane

3-dpye:

N,N´–bis(3–pyridinecarboxamide)–1,2–ethane

POM-2:

[MnMo6O18{(OCH2)3-C-C5H4N}2]3

DMF:

Dimethyl formamide

POM-2:

[MnMo6O18((OCH2)3CN = CH-3-Py)2]

bim:

Benzimidazole, btx:1,6-bis(1,2,4- triazol-1-y1)hexane

3-bpo:

(2,5-Bis(3-pyridyl)-1,3,4-oxadiazole)

L:

4,4′-Bis((1H-1,2,4-triazol-1-yl) methyl) biphenyl

L1 :

2,3-Diphenylpyrazine

PDA:

1,10-Phenanthroline-2,9-dicarboxylic acid

DAPSC:

2,6-Diacetylpyridine bis(semicarbazone)

bpp:

1,3-Bis(4-pyridyl)propane

Bbtz:

1,4-Bis(triazol-1-ylmethyl) benzene

Btp:

1,3-Bis-(1,2,4-triazol-1-yl) propane

Htrz:

1,2,4-Triazole

Hpzc:

Pyrazine-2-carboxylic acid

pz:

Pyrazine

H2pbtz:

5’-(Pyridin-2-yl)-1H,2’H-3,3’-bi(1,2,4-triazole)

BBTZ:

1,4-Bis(1,2,4-triazol-1-ylmethyl)-benzene

NMP:

N-methyl-2-pyrrolidone

References

  1. D. E. Katsoulis (1998). Chem. Rev. 98, 359–387.

    Article  CAS  PubMed  Google Scholar 

  2. N. S. Antonova, J. J. Carbo, U. Kortz, O. A. Kholdeeva, and J. M. Poblet (2010). J. Am. Chem. Soc. 132, 7488–7497.

    Article  CAS  PubMed  Google Scholar 

  3. D. Barats, G. Leitus, R. Popovitz-Biro, L. J. W. Shimon, and R. Neumann (2008). Angew. Chem. Int. Ed. 47, 9908–9912.

    Article  CAS  Google Scholar 

  4. R. E. Schreiber, L. Houben, S. G. Wolf, G. Leitus, Z.-L. Lang, J. J. Carbó, J. M. Poblet, and R. Neumann (2017). Nat. Chem. 9, 369–373.

    Article  CAS  PubMed  Google Scholar 

  5. C. Zhao, Z. Huang, W. Rodríguez-Cordoba, C. S. Kambara, K. P. O’Halloran, K. I. Hardcastle, D. G. Musaev, T. Lian, and C. L. Hill (2011). J. Am. Chem. Soc. 133, 20134–20137.

    Article  CAS  PubMed  Google Scholar 

  6. S. S. Mal and U. Kortz (2005). Angew. Chem. Int. Ed. 44, 3777–3780.

    Article  CAS  Google Scholar 

  7. J. Ettedgui, Y. Diskin-Posner, L. Weiner, and R. Neumann (2011). J. Am. Chem. Soc. 133, 188–190.

    Article  CAS  PubMed  Google Scholar 

  8. M. Natali, S. Berardi, A. Sartorel, M. Bonchio, S. Campagna, and F. Scandola (2012). Chem. Commun. 48, 8808–8810.

    Article  CAS  Google Scholar 

  9. R. Neumann and M. Dahan (1997). Nature 388, 353–355.

    Article  CAS  Google Scholar 

  10. K. Kamata, T. Yamaura, and N. Mizuno (2012). Angew. Chem. Int. Ed. 51, 7275–7278.

    Article  CAS  Google Scholar 

  11. Q. Li, Y. Wei, J. Hao, Y. Zhu, and L. Wang (2007). J. Am. Chem. Soc. 129, 5810–5811.

    Article  CAS  PubMed  Google Scholar 

  12. G. Absillis, E. Cartuyvels, R. V. Deun, and T. N. Parac-Vogt (2008). J. Am. Chem. Soc. 130, 17400–17408.

    Article  CAS  PubMed  Google Scholar 

  13. R. Palkovits, K. Tajvidi, A. M. Ruppertc, and J. Procelewska (2011). Chem. Commun. 47, 576–578.

    Article  CAS  Google Scholar 

  14. T. Hirano, K. Uehara, K. Kamata, and N. Mizuno (2012). J. Am. Chem. Soc. 134, 6425–6433.

    Article  CAS  PubMed  Google Scholar 

  15. A. Müller and C. Serain (2000). Acc. Chem. Res. 33, 2–10.

    Article  PubMed  CAS  Google Scholar 

  16. A. Müller, E. Krickemeyer, J. Meyer, H. Bögge, F. Peters, W. Plass, E. Diemann, S. Dillinger, F. Nonnenbruch, M. Randerath, and C. Menke (1995). Angew. Chem. Int. Ed. Engl. 34, 2122–2124.

    Article  Google Scholar 

  17. A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, and F. Peters (1998). Angew. Chem. Int. Ed. 37, 3360–3363.

    Google Scholar 

  18. T. Liu, E. Diemann, H. Li, A. W. M. Dress, and A. Müller (2003). Nature 426, 59–62.

    Article  CAS  PubMed  Google Scholar 

  19. J. Qiu, J. Ling, A. Sui, J. E. S. Szymanowski, A. Simonetti, and P. C. Burns (2012). J. Am. Chem. Soc. 134, 1810–1816.

    Article  CAS  PubMed  Google Scholar 

  20. H. Imai, T. Akutagawa, F. Kudo, M. Ito, and K., Toyoda, S. Noro, L. Cronin, and T. Nakamura, (2009). J. Am. Chem. Soc. 131, 13578–13579.

    Article  CAS  PubMed  Google Scholar 

  21. H. N. Miras, J. Yan, D.-L. Long, and L. Cronin (2012). Chem. Soc. Rev. 41, 7403–7430.

    Article  CAS  PubMed  Google Scholar 

  22. O. Oms, A. Dolbecq, and P. Mialane (2012). Chem. Soc. Rev. 41, 7497–7536.

    Article  CAS  PubMed  Google Scholar 

  23. A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009–6048.

    Article  CAS  PubMed  Google Scholar 

  24. A. Muller and P. Gouzerh (2012). Chem. Soc. Rev. 41, 7431–7463.

    Article  PubMed  CAS  Google Scholar 

  25. A. Banerjee, B. S. Bassil, G.-V. Roschenthaler, and U. Kortz (2012). Chem. Soc. Rev. 41, 7590–7604.

    Article  CAS  PubMed  Google Scholar 

  26. A. Dolbecq, P. Mialane, F. Secheresse, B. Keita, and L. Nadjo (2012). Chem. Commun. 48, 8299–8316.

    Article  CAS  Google Scholar 

  27. A. Müller, S. K. Das, C. Kuhlmann, H. Bögge, M. Schmidtmann, E. Diemann, E. Krickemeyer, J. Hormes, H. Modrow, and M. Schindler (2001). Chem. Commun. 2001, 655–656.

    Article  Google Scholar 

  28. N. Lotfian, M. M. Heravi, M. Mirzaei, and B. Heidari (2019). Appl. Organometal. Chem. 33, e4808.

  29. L. Vilà-Nadal and L. Cronin (2017). Nat Rev Mater 2, 17054.

    Article  CAS  Google Scholar 

  30. S. Reinoso (2011). Dalton Trans. 40, 6610–6615.

    Article  CAS  PubMed  Google Scholar 

  31. M. Mirzaei, H. Eshtiagh-Hosseini, and A. Hassanpoor (2019). Inorg. Chim. Acta 484, 332–337.

    Article  CAS  Google Scholar 

  32. H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev, and C. L. Hill (2012). Chem. Soc. Rev. 41, 7572–7589.

    Article  CAS  PubMed  Google Scholar 

  33. A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh, and G. Izzet (2012). Chem. Soc. Rev. 41, 7605–7622.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Wang and I. A. Weinstock (2012). Chem. Soc. Rev. 41, 7479–7496.

    Article  CAS  PubMed  Google Scholar 

  35. N. V. Izarova, M. T. Pope, and U. Kortz (2012). Angew. Chem. Int. Ed. 51, 9492–9510.

    Article  CAS  Google Scholar 

  36. I. A. Weinstock, R. E. Schreiber, and R. Neumann (2018). Chem. Rev. 118, 2680–2717.

    Article  CAS  PubMed  Google Scholar 

  37. C. Streb (2012). Dalton Trans. 41, 1651–1659.

    Article  CAS  PubMed  Google Scholar 

  38. E. Cadot, M. N. Sokolov, V. P. Fedin, C. Simonnet-Jegat, S. Floqueta, and F. Secheresse (2012). Chem. Soc. Rev. 41, 7335–7353.

    Article  CAS  PubMed  Google Scholar 

  39. J. M. Clemente-Juan, E. Coronado, and A. Gaita-Arino (2012). Chem. Soc. Rev. 41, 7464–7478.

    Article  CAS  PubMed  Google Scholar 

  40. M. Mirzaeia, H. Eshtiagh-Hosseinia, M. Alipoura, and A. Frontera (2014). Coord. Chem. Rev. 275, 1–18.

    Article  CAS  Google Scholar 

  41. H. He, F. Sun, S. Ma, and G. Zhu (2016). Inorg. Chem. 55, 9071–9076.

    Article  CAS  PubMed  Google Scholar 

  42. H. An, Z. Han, and T. Xu (2010). Inorg. Chem. 49, 11403–11414.

    Article  CAS  PubMed  Google Scholar 

  43. D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe, and O. M. Yaghi (2009). Chem. Soc. Rev. 38, 1257–1283.

    Article  CAS  PubMed  Google Scholar 

  44. B. Zheng, J. Bai, J. Duan, L. Wojtas, and M. J. Zaworotko (2011). J. Am. Chem. Soc. 133, 748–751.

    Article  CAS  PubMed  Google Scholar 

  45. B. Chen, S. Xiang, and G. Qian (2010). Acc. Chem. Res. 43, 1115–1124.

    Article  CAS  PubMed  Google Scholar 

  46. S. Khatua, S. Goswami, S. Biswas, K. Tomar, H. S. Jena, and S. Konar (2015). Chem. Mater. 27, 5349–5360.

    Article  CAS  Google Scholar 

  47. H. Yang, S. Gao, J. Lu, B. Xu, J. Lin, and R. Cao (2010). Inorg. Chem. 49, 736–744.

    Article  CAS  PubMed  Google Scholar 

  48. J. Sha, J. Peng, Y. Zhang, H. Pang, A. Tian, P. Zhang, and H. Liu (2009). Cryst. Growth Des. 9, 1708–1715.

    Article  CAS  Google Scholar 

  49. Y. Ren, C. Du, S. Feng, C. Wang, Z. Kong, B. Yue, and H. He (2011). CrystEngComm 13, 7143–7148.

    Article  CAS  Google Scholar 

  50. X.-J. Kong, Y.-P. Ren, P.-Q. Zheng, Y.-X. Long, L.-S. Long, R.-B. Huang, and L.-S. Zheng (2006). Inorg. Chem. 45, 10702–10711.

    Article  CAS  PubMed  Google Scholar 

  51. X. Wang, H. Hu, and A. Tian (2010). Cryst. Growth Des. 10, 4786–4794.

    Article  CAS  Google Scholar 

  52. A. X. Tian, J. Ying, J. Peng, J. Q. Sha, Z. M. Su, H. J. Pang, P. P. Zhang, Y. Chen, M. Zhu, and Y. Shen (2010). Cryst. Growth Des. 10, 1104–1110.

    Article  CAS  Google Scholar 

  53. J.-P. Wang, J.-W. Zhao, X.-Y. Duan, and J.-Y. Niu (2006). Cryst. Growth Des. 6, 507–513.

    Article  CAS  Google Scholar 

  54. H. An, Y. Li, D. Xiao, E. Wang, and C. Sun (2006). Cryst. Growth Des. 6, 1107–1112.

    Article  CAS  Google Scholar 

  55. H. An, Y. Hu, L. Wang, E. Zhou, F. Fei, and Z. Su (2015). Cryst. Growth Des. 15, 164–175.

    Article  CAS  Google Scholar 

  56. R. Bakri, A. Booth, G. Harle, P. S. Middleton, C. Wills, W. Clegg, R. W. Harrington, and R. J. Errington (2012). Chem. Commun. 48, 2779–2781.

    Article  CAS  Google Scholar 

  57. S. Uchida, R. Eguchi, S. Nakamura, Y. Ogasawara, N. Kurosawa, and N. Mizuno (2012). Chem. Mater. 24, 325–330.

    Article  CAS  Google Scholar 

  58. Y. P. Jeannin (1998). Chem. Rev. 98, 51–76.

    Article  CAS  PubMed  Google Scholar 

  59. K. Nomiya, Y. Sakai, and S. Matsunaga (2011). Eur. J. Inorg. Chem. 179–196.

  60. D.-L. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736–1758.

    Article  CAS  Google Scholar 

  61. K. C. Stylianou, R. Heck, S. Y. Chong, J. Bacsa, J. T. A. Jones, Y. Z. Khimyak, D. Bradshaw, and M. J. Rosseinsky (2010). J. Am. Chem. Soc. 132, 4119–4130.

    Article  CAS  PubMed  Google Scholar 

  62. D. Zhao, D. J. Timmons, D. Yuan, and H.-C. Zhou (2011). Acc. Chem. Res. 44, 123–133.

    Article  CAS  PubMed  Google Scholar 

  63. S. K. Henninger, H. A. Habib, and C. Janiak (2009). J. Am. Chem. Soc. 131, 2776–2777.

    Article  CAS  PubMed  Google Scholar 

  64. C. Dey, T. Kundu, B. P. Biswal, A. Mallick, and R. Banerjee (2014). Acta Cryst. B70, 3–10.

    Google Scholar 

  65. M. Fournier, C. Feumi-Jantou, C. Rabia, G. Herve, and S. Launay (1992). J. Mater. Chem. 2, 971–978.

    Article  CAS  Google Scholar 

  66. D. Mustafa, E. Breynaert, S. R. Bajpe, J. A. Martens, and C. E. A. Kirschhock (2011). Chem. Commun. 47, 8037–8039.

    Article  CAS  Google Scholar 

  67. H. Pang, J. Peng, C. Zhang, Y. Li, P. Zhang, H. Ma, and Z. A. Su (2010). Chem. Commun. 46, 5097–5099.

    Article  CAS  Google Scholar 

  68. J. Zhao, J. Zhang, Y. Li, J. Cao, and L. Chen (2014). Cryst. Growth Des. 14, 1467–1475.

    Article  CAS  Google Scholar 

  69. H. Yang, S. Guo, J. Tao, J. Lin, and R. Cao (2009). Cryst. Growth Des. 9, 4735–4744.

    Article  CAS  Google Scholar 

  70. G. Wang, T. Chen, X. Wang, H. Ma, and H. Pang (2017). Eur. J. Inorg. Chem. 5350–5355.

  71. C. Dey, T. Kundu, and R. Banerjee (2012). Chem. Commun. 48, 266–268.

    Article  CAS  Google Scholar 

  72. V. Kulikov and G. Meyer (2013). Cryst. Growth Des. 13, 2916–2927.

    Article  CAS  Google Scholar 

  73. C. Dey, R. Das, P. Poddar, and R. Banerjee (2012). Cryst. Growth Des. 12, 12–17.

    Article  CAS  Google Scholar 

  74. D. Liu, Y. Lu, H. Tan, W. Chen, Z. Zhang, Y. Li, and E.-B. Wang (2013). Chem. Commun. 49, 3673–3675.

    Article  CAS  Google Scholar 

  75. G. Rousseau, O. Oms, A. Dolbecq, J. Marrot, and P. Mialane (2011). Inorg. Chem. 50, 7376–7378.

    Article  CAS  PubMed  Google Scholar 

  76. X. Wang, Y. Li, Y. Lu, H. Fu, Z. Su, and E. Wang (2010). Cryst. Growth Des. 10, 4227–4230.

    Article  CAS  Google Scholar 

  77. S. G. Mitchell, C. Streb, H. N. Miras, T. Boyd, D.-L. Long, and L. Cronin (2010). Nat. Chem. 2, 308–312.

    Article  CAS  PubMed  Google Scholar 

  78. L. Chen, K. A. San, M. J. Turo, M. Gembicky, S. Fereidouni, M. Kalaj, and A. M. Schimpf (2019). J. Am. Chem. Soc. 141, 20261–20268.

    Article  CAS  PubMed  Google Scholar 

  79. R. Cao, S. Liu, L. Xie, Y. Pan, J. Cao, Y. Ren, and Xu. Lin (2007). Inorg. Chem. 46, 3541–3547.

    CAS  Google Scholar 

  80. M. Cheng, Z. Xiao, L. Yu, X. Lin, Y. Wang, and P. Wu (2019). Inorg. Chem. 58, 11988–11992.

    Article  CAS  PubMed  Google Scholar 

  81. X. Zhang, Z. Yi, L. Zhao, Q. Chen, X. Gu, J. Xu, X. Wang, C. Yang, X. Xua, and W. Xia (2009). Dalton Trans. 9198–9206.

  82. L. M. Rodriguez-Albelo, A. R. Ruiz-Salvador, A. Sampieri, D. W. Lewis, A. Gomez, B. Nohra, P. Mialane, J. Marrot, F. Secheresse, R. N. Caroline Mellot-Draznieks, B. Biboum, L. Keita, and A. Dolbecq. Nadjo (2009). J. Am. Chem. Soc. 131, 16078–16087.

    Article  PubMed  CAS  Google Scholar 

  83. Y. Ding, J. Meng, W. Chena, and E. Wang (2011). CrystEngComm 13, 2687–2692.

    Article  CAS  Google Scholar 

  84. G. Rousseau, L. M. Rodriguez-Albelo, W. Salomon, P. Mialane, J. Marrot, F. Doungmene, I. M. Mbomekallé, and P. d. Oliveira, A. Dolbecq, (2015). Cryst. Growth Des. 15, 449–456.

    Article  CAS  Google Scholar 

  85. Q. Han, B. Qi1, W. Ren, C. He, J. Niu, and C. Duan (2015). Nat. Commun. 6:10007.

  86. J. Qin, D. Du, W. Guan, X. Bo, Y. Li, L. Guo, Z. Su, Y. Wang, Y. Lan, and H. Zhou (2015). J. Am. Chem. Soc. 137, 7169–7177.

    Article  CAS  PubMed  Google Scholar 

  87. Q. Huang, T. Wei, M. Zhang, L. Dong, A. Zhang, S. Li, W. Liu, J. Liu, and Y. Lan (2017). J. Mater. Chem. A 5, 8477–8483.

    Article  CAS  Google Scholar 

  88. B. Cong, Z. Su, Z. Zhao, B. Yu, W. Zhao, and X. Ma (2017). Dalton Trans. 46, 7577–7583.

    Article  CAS  PubMed  Google Scholar 

  89. S. Li, H. Ma, H. Pang, Z. Zhang, Yan Yu, H. Liu, and T. Yu (2014). CrystEngComm, 16, 2045–2055.

  90. Y. Wu, X. Li, Y. Liu, G. Xiao, Y. Huang, Y. Li, D. Dang, and Y. Bai (2019). RSC Adv. 9, 11932–11938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. J. Zhang, R. Lai, Y. Wu, Z. Zhu, Y. Sun, Q. Zeng, X. Li, and S. Zheng (2020). Chem. Asian J. 15, 1574–1579.

    Article  CAS  PubMed  Google Scholar 

  92. H. An, Y. Li, E. Wang, D. Xiao, C. Sun, and L. Xu (2005). Inorg. Chem. 44, 6062–6070.

    Article  CAS  PubMed  Google Scholar 

  93. X. Wang, J. Sun, H. Lin, Z. Chang, X. Wang, and G. Liu (2016). Dalton Trans. 45, 12465–12478.

    Article  CAS  PubMed  Google Scholar 

  94. X. Wang, J. Sun, H. Lin, Z. Chang, G. Liu, and X. Wang (2017). CrystEngComm. 19, 3167–3177.

    Article  Google Scholar 

  95. F. Yazigi, C. Wilson, D. Long, and R. S. Forgan (2017). Cryst. Growth Des. 17, 4739–4748.

    Article  CAS  Google Scholar 

  96. M. Zhu, Y. Huang, J. Ma, S. Hu, Y. Wang, J. Guo, Y. Zhao, and L. Wang (2019). Cryst. Growth Des. 19, 925–931.

    Article  CAS  Google Scholar 

  97. H. An, Y. Hou, L. Wang, Y. Zhang, W. Yang, and S. Chang (2017). Inorg. Chem. 56, 11619–11632.

    Article  CAS  PubMed  Google Scholar 

  98. Z. Li, L. Lin, H. Yu, X. Li, and S. Zheng (2018). Angew. Chem. Int. Ed. 57, 15777–15781.

    Article  CAS  Google Scholar 

  99. J. Sha, J. Peng, H. Liu, J. Chen, B. Dong, A. Tian, and Z. Su (2007). Eur. J. Inorg. Chem. 1268–1274.

  100. A. Tian, J. Ying, J. Peng, J. Sha, H. Pang, P. Zhang, Y. Chen, M. Zhu, and Z. Su (2008). Cryst. Growth Des. 8, 3717–3724.

    Article  CAS  Google Scholar 

  101. X. Wang, H. Hu, G. Liu, H. Lin, and A. Tian (2010). Chem. Commun. 46, 6485–6487.

    Article  CAS  Google Scholar 

  102. Y. Bai, G. Zheng, D. Dang, H. Gao, Z. Qi, and J. Niu (2010). Spectrochim. Acta A 77, 727–731.

    Article  CAS  Google Scholar 

  103. X. Wang, Y. Wang, G. Liu, A. Tian, J. Zhang, and H. Lin (2011). Dalton Trans. 40, 9299–9305.

    Article  CAS  PubMed  Google Scholar 

  104. A. Tian, Y. Yang, J. Ying, N. Li, X. Lin, J. Zhang, and X. Wang (2014). Dalton Trans. 43, 8405–8413.

    Article  CAS  PubMed  Google Scholar 

  105. Y. Luo, X. Lu, and H. Zhang (2014). CrystEngComm. 16, 7865–7868.

    Article  CAS  Google Scholar 

  106. A. Tian, Y. Ning, Y. Yang, X. Hou, J. Ying, G. Liu, J. Zhang, and X. Wang (2015). Dalton Trans. 44, 16486–16493.

    Article  CAS  PubMed  Google Scholar 

  107. C. Zhao, S. Lia, H. Ma, C. Zhang, H. Pang, Y. Yu, and Z. Zhang (2016). CrystEngComm. 18, 6233–6244.

    Article  CAS  Google Scholar 

  108. A. Tian, Y. Tian, Y. Ning, X. Hou, H. Ni, X. Ji, G. Liu, and J. Ying (2016). Dalton Trans. 45, 13925–13936.

    Article  CAS  PubMed  Google Scholar 

  109. M. Alipour, O. Akintola, A. Buchholz, M. Mirzaei, H. Eshtiagh-Hosseini, H. Görls, and W. Plass (2016). Eur. J. Inorg. Chem. 2016, 5356–5365.

    Article  CAS  Google Scholar 

  110. Y. Li, L. Guo, H. Su, M. Jagodič, M. Luo, X. Zhou, S. Zeng, C. Tung, D. Sun, and L. Zheng (2017). Inorg. Chem. 56, 2481–2489.

    Article  CAS  PubMed  Google Scholar 

  111. M. Li, X. Yang, J. Li, N. Sheng, G. Liu, J. Sha, and Y. Lan (2018). Inorg. Chem. 57, 3865–3872.

    Article  CAS  PubMed  Google Scholar 

  112. S. Li, L. Zhang, Y. Lan, K. P. O’Halloran, H. Ma, and H. Pang (2018). Chem. Commun. 54, 1964–1967.

    Article  CAS  Google Scholar 

  113. X. Luo, N. Li, Z. Hu, J. Cao, C. Cui, Q. Lin, and Y. Xu (2019). Inorg. Chem. 58, 2463–2470.

    Article  CAS  PubMed  Google Scholar 

  114. A. Tian, J. Ying, J. Peng, J. Sha, Z. Han, J. Ma, Z. Su, N. Hu, and H. Jia (2008). Inorg. Chem. 47, 3274–3283.

    Article  CAS  PubMed  Google Scholar 

  115. J. Sha, Y. Jun Peng, Z. Lan, H. Su, A. Pang, P. Zhang. Tian, and M. Zhu (2008). Inorg. Chem. 47, 5145–5153.

    CAS  Google Scholar 

  116. H. Fu, Y. Li, Y. Lu, W. Chen, Q. Wu, J. Meng, X. Wang, Z. Zhang, and E. Wang (2011). Cryst. Growth Des. 11, 458–465.

    Article  CAS  Google Scholar 

  117. Y. Jiao, C. Qin, H. Zang, W. Chen, C. Wang, T. Zheng, K. Shao, and Z. Su (2015). CrystEngComm. 17, 2176–2189.

    Article  CAS  Google Scholar 

  118. F. Dhifallah, M. S. Belkhiria, L. Parent, N. Leclerc, and E. Cadot (2018). Inorg. Chem. 57, 11909–11919.

    Article  CAS  PubMed  Google Scholar 

  119. D. Li, Q. Xu, Y. Li, Y. Qiu, P. Ma, J. Niu, and J. Wang (2019). Inorg. Chem. 58, 4945–4953.

    Article  CAS  PubMed  Google Scholar 

  120. M. Cheng, Z. Xiao, L. Yu, X. Lin, Y. Wang, and P. Wu (2015). Inorg. Chem. 54, 7415–7423.

    Article  CAS  Google Scholar 

  121. H. Fu, C. Qin, Y. Lu, Z. Zhang, Y. Li, Z. Su, W. Li, and E. Wang (2012). Angew. Chem. Int. Ed. 51, 7985–7989.

    Article  CAS  Google Scholar 

  122. S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Camón, M. Evangelisti, F. Luis, M. J. Martínez-Pérez, and J. Sesé (2012). J. Am. Chem. Soc. 134, 14982–14990.

    Article  CAS  PubMed  Google Scholar 

  123. N. Lotfian, M. M. Heravi, M. Mirzaei, B. Heidari (2019). Appl. Organomet. Chem. 33, e4808.

  124. Y. Zhou, G. Chen, Z. Long, and J. Wang (2014). RSC Adv. 4, 42092–42113.

    Article  CAS  Google Scholar 

  125. A. Enferadi-Kerenkan, T. Do, and S. Kaliaguine (2018). Catal. Sci. Technol. 8, 2257–2284.

    CAS  Google Scholar 

  126. T. Baba, Y. Ono, T. Ishimoto, S. Morikawa, and S. Tanooka (1985). Bull. Chem. Soc. Jpn. 58, 2155–2156.

    Article  CAS  Google Scholar 

  127. T. Baba and Y. Ono (1986). Appl. Catal. 22, 321–324.

    Article  CAS  Google Scholar 

  128. S. Uchida and N. Mizuno (2003). Chem.–Eur. J. 9, 5850–5857.

    Article  CAS  PubMed  Google Scholar 

  129. S. Uchida, S. Hikichi, T. Akatsuka, T. Tanaka, R. Kawamoto, A. Lesbani, Y. Nakagawa, K. Uehara, and N. Mizuno (2007). Chem. Mater. 19, 4694–4701.

    Article  CAS  Google Scholar 

  130. K. Inumara, T. Ishihara, Y. Okuhara, and S. Yamanaka (2007). Angew. Chem. Int. Ed. 46, 7625–7628.

    Article  CAS  Google Scholar 

  131. C. Sun, S. Liu, D. Liang, K. Shao, Y. Ren, and Z. Su (2009). J. Am. Chem. Soc. 131, 1883–1888.

    Article  CAS  PubMed  Google Scholar 

  132. F. Ma, S. Liu, C. Sun, D. Liang, G. Ren, F. Wei, Y. Chen, and Z. and A. Su, (2011). J. Am. Chem. Soc. 133, 4178–4181.

    Article  CAS  PubMed  Google Scholar 

  133. J. Song, Z. Luo, D. K. Britt, H. Furukawa, O. M. Yaghi, K. I. Hard-castle, and C. L. Hill (2011). J. Am. Chem. Soc. 133, 16839–16846.

    Article  CAS  PubMed  Google Scholar 

  134. C. Zou, Z. Zhang, X. Xu, Q. Gong, J. Li, and C. D. Wu (2012). J. Am. Chem. Soc. 134, 87–90.

    Article  CAS  PubMed  Google Scholar 

  135. Q. Han, C. He, M. Zhao, B. Qi, J. Niu, and C. Duan (2013). J. Am. Chem. Soc. 135, 10186–10189.

    Article  CAS  PubMed  Google Scholar 

  136. D. Dutta, A. D. Jana, M. Debnath, A. Bhaumik, J. Marek, and M. Ali (2010). Dalton Trans. 39, 11551–11559.

    Article  CAS  PubMed  Google Scholar 

  137. H. An, L. Wang, Y. Hu, and F. Fei (2015). CrystEngComm. 17, 1531–1540.

    Article  CAS  Google Scholar 

  138. Z. Zhang, M. Sadakane, T. Murayama, S. Izumi, N. Yasuda, N. Sakaguchi, and W. Ueda (2014). Inorg. Chem. 53, 903–911.

    Article  CAS  PubMed  Google Scholar 

  139. B. Nohra, H. E. Moll, L. M. R. Albelo, P. Mialane, J. Marrot, C. Mellot-Draznieks, M. O’Keeffe, R. N. Biboum, J. Lemaire, B. Keita, L. Nadjo, and A. Dolbecq (2011). J. Am. Chem. Soc. 133, 13363–13374.

    Article  CAS  PubMed  Google Scholar 

  140. J. M. Clemente-Juan and E. Coronado (1999). Coord. Chem. Rev. 193–195, 361–394.

    Article  Google Scholar 

  141. M. Shiddiq, D. Komijani, Y. Duan, A. Gaita-Ariño, E. Coronado, and S. Hill (2016). Nature 531, 348–351.

    Article  CAS  PubMed  Google Scholar 

  142. D. Gatteschi and R. Sessoli (2003). Angew. Chem. Int. Ed. 42, 268–297.

    Article  CAS  Google Scholar 

  143. M. A. AlDamen, J. M. Clemente-Juan, E. Coronado, and C. Martı´-Gastaldo, and A. Gaita-Ariño, (2008). J. Am. Chem. Soc. 130, 8874–8875.

    Article  CAS  PubMed  Google Scholar 

  144. K. Suzuki, R. Sato, and N. Mizuno (2013). Chem. Sci. 4, 596–600.

    Article  CAS  Google Scholar 

  145. J.-D. Compain, P. Mialane, A. Dolbecq, I. Mbomekallé, J. Marrot, F. Sécheresse, E. Riviéré, G. Rogez, and W. Wernsdorfer (2009). Angew. Chem. Int. Ed. 48, 3077–3081.

    Article  CAS  Google Scholar 

  146. X. Fang, P. Kögerler, M. Speldrich, H. Schilder, and M. Luban (2012). Chem. Commun. 48, -1220.

  147. M. D. Jenkins, Y. Duan, B. Diosdado, J. J. García-Ripoll, A. Gaita-Ariño, C. Giménez-Saiz, P. J. Alonso, E. Coronado, and F. Luis (2017). Phys. Rev. B 95, 064423.

  148. N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, and Y. Kaizu (2003). J. Am. Chem. Soc. 125, 8694–8695.

    Article  CAS  PubMed  Google Scholar 

  149. C. Ritchie, A. Ferguson, H. Nojiri, H. N. Miras, Y.-F. Song, D.-L. Long, E. Burkholder, M. Murrie, P. Kögerler, E. K. Brechin, and L. Cronin (2008). Angew. Chem. Int. Ed. 47, 5609–5612.

    Article  CAS  Google Scholar 

  150. M. Ibrahim, Y. Lan, B. S. Bassil, Y. Xiang, A. Suchopar, A. K. Powell, and U. Kortz (2011). Angew. Chem. Int. Ed. 50, 4708–4711.

    Article  CAS  Google Scholar 

  151. Y. Huo, R. Wan, P. Ma, J. Liu, Y. Chen, D. Li, J. Niu, J. Wang, and M.-L. Tong (2017). Inorg. Chem. 56, 12687–12691.

    Article  CAS  PubMed  Google Scholar 

  152. M. Mariani, F. Borsa, M. J. Graf, S. Sanna, M. Filibian, T. Orlando, K. P. V. Sabareesh, S. Cardona-Serra, E. Coronado, A. Lascialfari (2018). Phys. Rev. B 97, 144414.

  153. I. Chakraborty and T. Pradeep (2017). Chem. Rev. 117, 8208–8271.

    Article  CAS  PubMed  Google Scholar 

  154. M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma (2016). Chem. Rev. 116, 3722–3811.

    Article  CAS  PubMed  Google Scholar 

  155. Y. Lint and R. G. Finke (1994). J. Am. Chem. Soc. 116, 8335–8353.

    Article  Google Scholar 

  156. S. Mandal, P. R. Selvakannan, R. Pasricha, and M. Sastry (2003). J. Am. Chem. Soc. 125, 8440–8441.

    Article  CAS  PubMed  Google Scholar 

  157. S. Mandal, A. B. Mandale, and M. Sastry (2004). J. Mater. Chem. 14, 2868–2871.

    Article  CAS  Google Scholar 

  158. G. Maayan, and R. Neumann (2005). Chem. Commun. 4595–4597.

  159. A. V. Gordeev and B. G. Ershov (1999). High Energy Chem. 33, 218–223.

    CAS  Google Scholar 

  160. G. M. Maksimov, V. I. Zaikovskii, K. I. Mateev, and V. A. Likholobov (2000). Kinetics and Catalysis 41, 844–852.

    Article  CAS  Google Scholar 

  161. A. Troupis, A. Hiskia, and E. Papaconstantinou (2002). Angew. Chem. Int. Ed. 41, 1911–1914.

    Article  CAS  Google Scholar 

  162. B. Keita, I. Mbomekalle, L. Nadjo, and C. Haut (2004). Electrochem. Comm. 6, 978–983.

    Article  CAS  Google Scholar 

  163. J. Zhang, B. Keita, L. Nadjo, I. M. Mbomekalle, and T. Liu (2008). Langmuir 24, 5277–5283.

    Article  CAS  PubMed  Google Scholar 

  164. G. Maayan and R. Neumann (2008). Catal. Lett. 123, 41–45.

    Article  CAS  Google Scholar 

  165. Y. Shi, W. Qiu, and Y. Zheng (2006). J. Phys. Chem. Solids 67, 2409–2418.

    Article  CAS  Google Scholar 

  166. P. S. Kishore, B. Viswanathan, and T. K. Varadarajan (2008). Nanoscale Res. Lett. 3, 14–20.

    Article  CAS  Google Scholar 

  167. C. R. Graham, L. S. Ott, and R. G. Finke (2009). Langmuir 25, 1327–1336.

    Article  CAS  PubMed  Google Scholar 

  168. S. Khadempir, A. Ahmadpour, M. T. H. Mosavian, N. Ashraf, F. F. Bamoharram, S. G. Mitchell, and J. M. de la. Fuente (2015). RSC Adv. 5, 24319–24326.

  169. Y. Wang, A. Neyman, E. Arkhangelsky, V. Gitis, L. Meshi, and I. A. Weinstock (2009). J. Am. Chem. Soc. 131, 17412–17422.

    Article  CAS  PubMed  Google Scholar 

  170. G. Zhang, B. Keita, A. Dolbecq, P. Mialane, F. Sécheresse, F. Miserque, and L. Nadjo (2007). Chem. Mater. 19, 5821–5823.

    Article  CAS  Google Scholar 

  171. B. Keita, G. Zhang, A. Dolbecq, P. Mialane, F. Sécheresse, F. Miserque, and L. Nadjo (2007). J. Phys. Chem. C 111, 8145–8148.

    Article  CAS  Google Scholar 

  172. L. Shi, B. Li, and L. Wu (2015). Chem. Commun. 51, 172–175.

    Article  CAS  Google Scholar 

  173. S. Martín, Y. Takashima, C. Lin, Y. Song, H. N. Miras, and L. Cronin (2019). Inorg. Chem. 58, 4110–4116.

    Article  PubMed  CAS  Google Scholar 

  174. D. R. Handwerk, P. D. Shipman, S. Özkar, and R. G. Finke (2020). Langmuir 36, 1496–1506.

    Article  CAS  PubMed  Google Scholar 

  175. Y. Kikukawa, Y. Kuroda, K. Suzuki, M. Hibino, K. Yamaguchi, and N. Mizuno (2013). Chem. Commun. 49, 376–378.

    Article  CAS  Google Scholar 

  176. K. Yonesato, H. Ito, D. Yokogawa, K. Yamaguchi, and K. Suzuki (2020). Angew Chem. Int. Ed. 59, 16361–16365.

    Article  CAS  Google Scholar 

  177. K. Yonesato, H. Ito, H. Itakura, D. Yokogawa, T. Kikuchi, N. Mizuno, K. Yamaguchi, and K. Suzuki (2019). J. Am. Chem. Soc. 141, 19550–19554.

    Article  CAS  PubMed  Google Scholar 

  178. S. G. Mitchell and J. M. de la. Fuente, (2012). J. Mater. Chem. 22, 18091–18100.

    Article  CAS  Google Scholar 

  179. Y. Wang and I. A. Weinstock (2010). Dalton Trans. 39, 6143–6152.

    Article  CAS  PubMed  Google Scholar 

  180. L. Jin, Z.-K. Zhu, Y.-L. Wu, Y.-J. Qi, X.-X. Li, and S.-T. Zheng (2017). Angew. Chem. Int. Ed. 56, 16288–16292.

    Article  CAS  Google Scholar 

  181. P. Yang, M. Alsufyani, A.-H. Emwas, C. Chen, and N. M. Khashab (2018). Angew. Chem. Int. Ed. 57, 13046–13051.

    Article  CAS  Google Scholar 

  182. M. J. Turo, L. Chen, C. E. Moore, and A. M. Schimpf (2019). J. Am. Chem. Soc. 141, 4553–4557.

    Article  CAS  PubMed  Google Scholar 

  183. Y. Su, Z. Wang, G. Zhuang, Q. Zhao, X. Wang, C. Tung, and D. Sun (2019). Chem. Sci. 10, 564–568.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CD acknowledges Prof. Rahul Banerjee for his encouragement to build up this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Dey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, C. Polyoxometalate Clusters: Inorganic Ligands for Functional Materials. J Clust Sci 33, 1839–1856 (2022). https://doi.org/10.1007/s10876-021-02110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02110-8

Keywords

Navigation