Skip to main content
Log in

In Silico Modelling of Viscoelastic Surfactants: Towards NLO Response and Novel Physical Insights through Bridging Acceptor

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Development of materials with promising nonlinear optical (NLO) properties is getting attention of both theoretical and experimental communities in fundamental and applied research. In present quantum chemical calculations, potential use of viscoelastic surfactants for NLO properties and associated applications has been discussed. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations at B3LYP level of theory and 6–311 + G(d, p) basis set have been performed to evaluate the electronic properties, photophysical characteristics, ionization potential (I), electron affinity (A), electronegativity (X), chemical potential (μ), global hardness (η), global softness (S), global electrophilicity (ω), frontier molecular orbital (FMO), natural bond orbital (NBO) analysis, linear and NLO properties or first hyperpolarizability (β) of N-(3-((3-hydrosulfonylpropyl)dimethyl-l4-azaneyl)propyl)-hydroxy- decanamidehydrate based four representative compounds/surfactants as system 1, system 2, system 3 and system 4. The FMO analysis confirmed the successful migration of charge transfer among the molecules. The NBO analysis has confirmed that the presence of non-covalent interactions (NCIs) and hyper-conjugative interactions (HCIs) are pivotal cause for the stability of the studied systems (1–4). The NLO analysis has also shown that the investigated viscoelastic surfactants hold significant NLO properties (752.28–758.53 a.u) which are better than standard molecule recommended for the NLO activity of said viscoelastic surfactants. We hope that this computational insight may provide new ways for the utilization of viscoelastic surfactants as NLO material for optoelectronic applications.

Graphic Abstract

Exploring the NLO behavior of N-(3-((3-hydrosulfonylpropyl)dimethyl-l4-azaneyl)propyl)-hydroxy-decanamidehydrate based four novel viscoelastic surfactants. The insight may provide new ways for the utilization of viscoelastic surfactants as NLO material for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland (2010). Nonlinear refraction and absorption: mechanisms and magnitudes. Adv. Opt. Photonics 2 (1), 60–200.

    Article  CAS  Google Scholar 

  2. D.F. Eaton, Nonlinear Optical Materials: The Great and Near Great, ACS Publications 1991.

  3. S. R. Marder and J. W. Perry (1993). Molecular materials for second-order nonlinear optical applications. Adv. Mater. 5 (11), 804–815.

    Article  CAS  Google Scholar 

  4. Z. Peng and L. Yu (1994). Second-order nonlinear optical polyimide with high-temperature stability. Macromolecules 27 (9), 2638–2640.

    Article  CAS  Google Scholar 

  5. E. M. Breitung, C.-F. Shu, and R. J. McMahon (2000). Thiazole and thiophene analogues of donor− acceptor stilbenes: molecular hyperpolarizabilities and structure− property relationships. J. Am. Chem. Soc. 122 (6), 1154–1160.

    Article  CAS  Google Scholar 

  6. P. S. Halasyamani and W. Zhang (2017). Viewpoint: inorganic materials for UV and deep-UV nonlinear-optical applications. Inorg. Chem. 56 (20), 12077–12085.

    Article  CAS  PubMed  Google Scholar 

  7. B. Zhang, G. Shi, Z. Yang, F. Zhang, and S. Pan (2017). Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem. Int. Ed. 56 (14), 3916–3919.

    Article  CAS  Google Scholar 

  8. S. Yamashita (2012). A tutorial on nonlinear photonic applications of carbon nanotube and graphene. J. Lightwave Technol. 30 (4), 427–447.

    Article  CAS  Google Scholar 

  9. L. Guo, Z. Guo, and X. Li (2018). Design and preparation of side chain electro-optic polymeric materials based on novel organic second order nonlinear optical chromophores with double carboxyl groups. J. Mater. Sci. Mater. Electron. 29 (3), 2577–2584.

    Article  CAS  Google Scholar 

  10. R. D. Fonseca, M. G. Vivas, D. L. Silva, G. Eucat, Y. Bretonnière, C. Andraud, L. De Boni, and C. R. Mendonça (2018). First-order hyperpolarizability of triphenylamine derivatives containing cyanopyridine: molecular branching effect. J. Phys. Chem. C 122 (3), 1770–1778.

    Article  CAS  Google Scholar 

  11. W. Chen, K. Tian, X. Song, Z. Zhang, K. Ye, G. Yu, and Y. Wang (2015). Large π-conjugated quinacridone derivatives: syntheses, characterizations, emission, and charge transport properties. Org. Lett. 17 (24), 6146–6149.

    Article  CAS  PubMed  Google Scholar 

  12. C. Wang, Z. Zhang, and Y. Wang (2016). Quinacridone-based π-conjugated electronic materials. J. Mater. Chem. C 4 (42), 9918–9936.

    Article  CAS  Google Scholar 

  13. M. R. S. A. Janjua (2017). First theoretical framework of di-substituted donor moieties of triphenylamine and carbazole for NLO properties: quantum paradigms of interactive molecular computation. Mol. Simulat. 43 (18), 1539–1545.

    Article  CAS  Google Scholar 

  14. R. Mahmood, M. R. S. A. Janjua, and S. Jamil (2017). DFT molecular simulation for design and effect of core bridging acceptors (BA) on NLO response: first theoretical framework to enhance nonlinearity through BA. J. Cluster Sci. 28 (6), 3175–3183.

    Article  CAS  Google Scholar 

  15. M. R. S. A. Janjua, Z. H. Yamani, S. Jamil, A. Mahmood, I. Ahmad, M. Haroon, M. H. Tahir, Z. Yang, and S. Pan (2016). First principle study of electronic and non-linear optical (NLO) properties of triphenylamine dyes: Interactive design computation of new NLO compounds. Aust. J. Chem. 69 (4), 467–472.

    Article  CAS  Google Scholar 

  16. N. B. Teran, G. S. He, A. Baev, Y. Shi, M. T. Swihart, P. N. Prasad, T. J. Marks, and J. R. Reynolds (2016). Twisted thiophene-based chromophores with enhanced intramolecular charge transfer for cooperative amplification of third-order optical nonlinearity. J. Am. Chem. Soc. 138 (22), 6975–6984.

    Article  CAS  PubMed  Google Scholar 

  17. M. Shimada, Y. Yamanoi, T. Matsushita, T. Kondo, E. Nishibori, A. Hatakeyama, K. Sugimoto, and H. Nishihara (2015). Optical properties of disilane-bridged donor–acceptor architectures: strong effect of substituents on fluorescence and nonlinear optical properties. J. Am. Chem. Soc. 137 (3), 1024–1027.

    Article  CAS  PubMed  Google Scholar 

  18. M. Yang, D. Jacquemin, and B. Champagne (2002). Intramolecular charge transfer and first-order hyperpolarizability of planar and twisted sesquifulvalenes. Phys. Chem. Chem. Phys. 4 (22), 5566–5571.

    Article  CAS  Google Scholar 

  19. G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, and K. R. Poeppelmeier (2017). Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 139 (31), 10645–10648.

    Article  CAS  PubMed  Google Scholar 

  20. M. Mutailipu, M. Zhang, B. Zhang, L. Wang, Z. Yang, X. Zhou, and S. Pan (2018). SrB5O7F3 functionalized with [B5O9F3]6− chromophores: accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 57 (21), 6095–6099.

    Article  CAS  Google Scholar 

  21. A. Andersen, J. Örtegren, P. Koelsch, D. Wantke, and H. Motschmann (2006). Oscillating bubble SHG on surface elastic and surface viscoelastic systems: new insights in the dynamics of adsorption layers. J. Phys. Chem. B 110 (37), 18466–18472.

    Article  CAS  PubMed  Google Scholar 

  22. J. Soltero, F. Bautista, J. Puig, O. Manero, Rheology of Cetyltrimethylammonium p-Toluenesulfonate− Water System. 3. Nonlinear Viscoelasticity, Langmuir 15(5) (1999) 1604–1612.

  23. B. Yesilata, C. Clasen, and G. H. McKinley (2006). Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J. Non-Newtonian Fluid Mech. 133 (2–3), 73–90.

    Article  CAS  Google Scholar 

  24. A. A. Braga, G. Ujaque, and F. Maseras (2006). A DFT Study of the full catalytic cycle of the suzuki-miyaura cross-coupling on a model system. Organometallics 25 (15), 3647–3658.

    Article  CAS  Google Scholar 

  25. M. García-Melchor, A. A. Braga, A. Lledós, G. Ujaque, and F. Maseras (2013). Computational perspective on Pd-catalyzed C-C cross-coupling reaction mechanisms. Acc. Chem. Res. 46 (11), 2626–2634.

    Article  PubMed  Google Scholar 

  26. A. A. Braga, N. H. Morgon, G. Ujaque, and F. Maseras (2005). Computational characterization of the role of the base in the Suzuki-Miyaura cross-coupling reaction. J. Am. Chem. Soc. 127 (25), 9298–9307.

    Article  CAS  PubMed  Google Scholar 

  27. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.J. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, D. 0109, Revision D. 01, Gaussian, Inc., Wallingford, CT (2009).

  28. R. Dennington, T. Keith, and J. Millam, GaussView, version 5 (Semichem Inc., Shawnee Mission, KS, 2009).

    Google Scholar 

  29. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4 (1), 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. ChemCraft, https://www.chemcraftprog.com/.

  31. N. M. O’boyle, A. L. Tenderholt, and K. M. Langner (2008). Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29 (5), 839–845.

    Article  PubMed  Google Scholar 

  32. M. Srnec and E. I. Solomon (2017). Frontier molecular orbital contributions to chlorination versus hydroxylation selectivity in the non-heme iron halogenase SyrB2. J. Am. Chem. Soc. 139 (6), 2396–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F. Kandemirli and S. Sagdinc (2007). Theoretical study of corrosion inhibition of amides and thiosemicarbazones. Corros. Sci. 49 (5), 2118–2130.

    Article  CAS  Google Scholar 

  34. R. G. Parr, L. V. Szentpaly, and S. Liu (1999). Electrophilicity index. J. Am. Chem. Soc. 121 (9), 1922–1924.

    Article  CAS  Google Scholar 

  35. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke (1978). Electronegativity: the density functional viewpoint. J. Chem. Phys. 68 (8), 3801–3807.

    Article  CAS  Google Scholar 

  36. P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Electrophilicity index. Chem. Rev. 106 (6), 2065–2091.

    Article  CAS  PubMed  Google Scholar 

  37. A. Lesar and I. Milošev (2009). Density functional study of the corrosion inhibition properties of 1, 2, 4-triazole and its amino derivatives. Chem. Phys. Lett. 483 (4), 198–203.

    Article  CAS  Google Scholar 

  38. A. Hussain, M. U. Khan, M. Ibrahim, M. Khalid, A. Ali, S. Hussain, M. Saleem, N. Ahmad, S. Muhammad, and A. G. Al-Sehemi (2019). Structural parameters, electronic, linear and nonlinear optical exploration of thiopyrimidine derivatives: a comparison between DFT/TDDFT and experimental study. J. Mol. Struct. 1201, 127183.

    Article  Google Scholar 

  39. B. Khan, M. Khalid, M. R. Shah, M. N. Tahir, M. U. Khan, A. Ali, and S. Muhammad (2019). Efficient synthesis by mono-carboxy methylation of 4, 4′-biphenol, X-ray diffraction, spectroscopic characterization and computational study of the crystal packing of ethyl 2-((4′-hydroxy-[1, 1′-biphenyl]-4-yl) oxy) acetate. ChemistrySelect 4 (32), 9274–9284.

    Article  CAS  Google Scholar 

  40. M. Rafiq, M. Khalid, M. N. Tahir, M. U. Ahmad, M. U. Khan, M. M. Naseer, A. A. C. Braga, S. Muhammad, and Z. Shafiq (2019). Synthesis, XRD, spectral (IR, UV–Vis, NMR) characterization and quantum chemical exploration of benzoimidazole-based hydrazones: a synergistic experimental-computational analysis. Appl. Organomet. Chem. 33, e5182.

    Article  CAS  Google Scholar 

  41. M. Haroon, M. Khalid, T. Akhtar, M. N. Tahir, M. U. Khan, M. Saleem, and R. Jawaria (2019). Synthesis, spectroscopic, SC-XRD characterizations and DFT based studies of ethyl2-(substituted-(2-benzylidenehydrazinyl)) thiazole-4-carboxylate derivatives. J. Mol. Struct. 1187, 164–171.

    Article  CAS  Google Scholar 

  42. M. N. Tahir, S. H. Mirza, M. Khalid, A. Ali, M. U. Khan, and A. A. C. Braga (2019). Synthesis, single crystal analysis and DFT based computational studies of 2, 4-diamino-5-(4-chlorophenyl)-6-ethylpyrim idin-1-ium 3, 4, 5-trihydroxybenzoate-methanol (DETM). J. Mol. Struct. 1180, 119–126.

    Article  CAS  Google Scholar 

  43. M. N. Tahir, M. Khalid, A. Islam, S. M. A. Mashhadi, and A. A. Braga (2017). Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives. J. Mol. Struct. 1127, 766–776.

    Article  CAS  Google Scholar 

  44. M. Khalid, R. S. Ullah, M. A. Choudhary, M. N. Tahir, and S. Murtaza (2018). Structural, SC-XRD and spectroscopic investigation of schiff base derivatives: a joint experimental and DFT investigation. J. Mol. Struct. 1167, 57–68.

    Article  CAS  Google Scholar 

  45. P. C. Ray (2010). Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. 110 (9), 5332–5365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Q. Zhang, L. Li, M. Zhang, Z. Liu, J. Wu, H. Zhou, J. Yang, S. Zhang, and Y. Tian (2013). Nonlinear optical response and biological applications of a series of pyrimidine-based molecules for copper (II) ion probe. Dalton Trans. 42 (24), 8848–8853.

    Article  CAS  PubMed  Google Scholar 

  47. M. U. Khan, M. Khalid, M. Ibrahim, A. A. C. Braga, M. Safdar, A. A. Al-Saadi, and M. R. S. A. Janjua (2018). First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J. Phys. Chem. C 122 (7), 4009–4018.

    Article  CAS  Google Scholar 

  48. M. R. S. A. Janjua, M. U. Khan, B. Bashir, M. A. Iqbal, Y. Song, S. A. R. Naqvi, and Z. A. Khan (2012). Effect of π-conjugation spacer (C C) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: a DFT study. Comp. Theor. Chem. 994, 34–40.

    Article  CAS  Google Scholar 

  49. M. R. S. A. Janjua, M. Amin, M. Ali, B. Bashir, M. U. Khan, M. A. Iqbal, W. Guan, L. Yan, and Z. M. Su (2012). A DFT study on the two-dimensional second-order nonlinear optical (NLO) response of terpyridine-substituted hexamolybdates: physical insight on 2D inorganic-organic hybrid functional materials. Eur. J. Inorg. Chem. 2012 (4), 705–711.

    Article  CAS  Google Scholar 

  50. M. U. Khan, M. Ibrahim, M. Khalid, M. S. Qureshi, T. Gulzar, K. M. Zia, A. A. Al-Saadi, and M. R. S. A. Janjua (2019). First theoretical probe for efficient enhancement of nonlinear optical properties of quinacridone based compounds through various modifications. Chem. Phys. Lett. 715, 222–230.

    Article  CAS  Google Scholar 

  51. M. U. Khan, M. Ibrahim, M. Khalid, A. A. C. Braga, S. Ahmed, and A. Sultan (2019). Prediction of second-order nonlinear optical properties of D–p–A compounds containing novel fluorene derivatives: a promising route to giant hyperpolarizabilities. J. Cluster Sci. 30 (2), 415–430.

    Article  CAS  Google Scholar 

  52. M. U. Khan, M. Ibrahim, M. Khalid, S. Jamil, A. A. Al-Saadi, and M. R. S. A. Janjua (2019). Quantum chemical designing of indolo [3, 2, 1-jk] carbazole-based dyes for highly efficient nonlinear optical properties. Chem. Phys. Lett. 719, 59–66.

    Article  CAS  Google Scholar 

  53. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Chemistry, King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia

Author information

Authors and Affiliations

Authors

Contributions

Both the corresponding authors, Dr. MRSAJ and Dr. RM have contributed equally in this manuscript.

Corresponding authors

Correspondence to Muhammad Ramzan Saeed Ashraf Janjua or Rashid Mahmood.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 1544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjua, M.R.S.A., Mahmood, R., Haroon, M. et al. In Silico Modelling of Viscoelastic Surfactants: Towards NLO Response and Novel Physical Insights through Bridging Acceptor. J Clust Sci 33, 519–528 (2022). https://doi.org/10.1007/s10876-021-01997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-01997-7

Keywords

Navigation