Skip to main content
Log in

Catalytic Degradation of Methyl Orange and Selective Sensing of Mercury Ion in Aqueous Solutions Using Green Synthesized Silver Nanoparticles from the Seeds of Derris trifoliata

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, bio-augmented silver nanoparticles with Derris trifoliata seed extract (AgNP-DT) have been developed. Formation of AgNP-DT has been confirmed with X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FTIR). Even though introduced for the first time as a catalyst owing to high surface area, the as-prepared nanoparticles showed one of the best catalytic activity in the reduction of a water soluble azo dye–methyl orange. An incredible pseudo-first order rate constant (0.3208 min−1) and activity parameter (1086 s−1 g−1) were obtained for the catalytic reduction of methyl orange with 4.9 μg AgNP-DT. Furthermore, AgNP-DT exhibits a good selectivity and sensitivity towards mercury(II) ions over other metals in aqueous solution. Absorbance of AgNP-DT exhibits a good linear relationship against concentration of Hg2+ with a limit of detection (LOD) of 1.55 μM. The mechanism of sensing activity of AgNP-DT was elucidated by measuring the variation in the zeta potential of the system with increasing concentration of Hg2+. Moreover the proposed method could be practicably applied for the detection of Hg2+ in real water samples with a percentage recovery in range of 91.41–108.07%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Mance Pollution Threat of Heavy Metals in Aquatic Environments (Springer, Berlin, 2012).

    Google Scholar 

  2. K. Naseem, Z. H. Farooqi, R. Begum, and A. Irfan (2018). J. Clean. Prod. 187, 296.

    Article  CAS  Google Scholar 

  3. M. Saeed, A. Ahmad, R. Boddula, Inamuddin, Au Haq, and A. Azhar (2018). Environ. Chem. Lett. 16, 287.

    Article  CAS  Google Scholar 

  4. C. Nie, P. Sun, L. Zhu, S. Gao, H. Wu, and B. Wang (2017). Environ Chem. 14, 188.

    Article  CAS  Google Scholar 

  5. C. Fersi, L. Gzara, and M. Dhahbi (2005). Desalination 185, 399.

    Article  CAS  Google Scholar 

  6. D. Mani and C. Kumar (2014). Int. J. Environ. Sci. Technol. 11, 843.

    Article  CAS  Google Scholar 

  7. C. Liu, P. Wu, L. Tran, N. Zhu, and Z. Dang (2018). Environ. Chem. 15, 286.

    Article  CAS  Google Scholar 

  8. L. M. Soldatkina and E. V. Sagaidak (2010). J. Water Chem. Technol. 32, 212.

    Article  Google Scholar 

  9. S. S. Hassan, A. R. Solangi, M. H. Agheem, Y. Junejo, N. H. Kalwar, and Z. A. Taga (2011). J. Hazard. Mater. 190, 1030.

    Article  CAS  PubMed  Google Scholar 

  10. H. Hu, J. H. Xin, H. Hu, X. Wang, D. Miao, and Y. Liu (2015). J. Mater. Chem. A 3, 11157.

    Article  CAS  Google Scholar 

  11. Y.-C. Chang and D.-H. Chen (2009). J. Hazard. Mater. 165, 664.

    Article  CAS  PubMed  Google Scholar 

  12. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M. H. Whangbo (2008). Angewandte Chemie Int. Edn. 47, 7931.

    Article  CAS  Google Scholar 

  13. S.-Y. Lin, Y.-T. Tsai, C.-C. Chen, C.-M. Lin, and C.-H. Chen (2004). J. Phys. Chem. B 108, 2134.

    Article  CAS  Google Scholar 

  14. N. Kulkarni and U. Muddapur (2014). J. Nanotechnol. 2014, 510246.

    Article  CAS  Google Scholar 

  15. P. Kumar, M. Govindaraju, S. Senthamilselvi, and K. Premkumar (2013). Colloids Surf B Biointerfaces 103, 658.

    Article  CAS  PubMed  Google Scholar 

  16. Q. Wang, D. Kim, D. D. Dionysiou, G. A. Sorial, and D. Timberlake (2004). Environ. Pollut. 131, 323.

    Article  CAS  PubMed  Google Scholar 

  17. M. C. Houston (2011). J. Clin. Hypertens. 13, 621.

    Article  CAS  Google Scholar 

  18. K. Leopold, M. Foulkes, and P. Worsfold (2010). Analytica Chimica Acta. 663, 127.

    Article  CAS  PubMed  Google Scholar 

  19. S. W. Thomas, G. D. Joly, and T. M. Swager (2007). Chem. Rev. 107, 1339.

    Article  CAS  PubMed  Google Scholar 

  20. N. Wanichacheva, M. Siriprumpoonthum, A. Kamkaew, and K. Grudpan (2009). Tetrahedron Lett. 50, 1783.

    Article  CAS  Google Scholar 

  21. K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour (2012). Sensors Actuators B Chem. 161, 880.

    Article  CAS  Google Scholar 

  22. R. Tabaraki and N. Sadeghinejad (2018). Ecotoxicol. Environ. Saf. 153, 101.

    Article  CAS  PubMed  Google Scholar 

  23. F. Geng, X. Jiang, Y. Wang, C. Shao, K. Wang, P. Qu, and M. Xu (2018). Sensors Actuators B Chem. 260, 793.

    Article  CAS  Google Scholar 

  24. X. Zhang, W. Shi, X. Chen, and Z. Xie (2018). Sensors Actuators B Chem. 255, 3074.

    Article  CAS  Google Scholar 

  25. H. Yu, D. Long, and W. Huang (2018). Sensors Actuators B Chem. 264, 164.

    Article  CAS  Google Scholar 

  26. Y. Zhou, W. Huang, and Y. He (2018). Sensors Actuators B Chem. 270, 187.

    Article  CAS  Google Scholar 

  27. M. Zhao, H. Yu, and Y. He (2019). Sensors Actuators B Chem. 283, 329.

    Article  CAS  Google Scholar 

  28. Y. Gao, K. Wu, H. Li, W. Chen, M. Fu, K. Yue, X. Zhu, and Q. Liu (2018). Sensors Actuators B Chem. 273, 1635.

    Article  CAS  Google Scholar 

  29. H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu, and X. Zhang (2018). Sensors Actuators B Chem. 271, 336.

    Article  CAS  Google Scholar 

  30. X. Zhu, W. Chen, K. Wu, H. Li, M. Fu, Q. Liu, and X. Zhang (2018). New J. Chem. 42, 1501.

    Article  CAS  Google Scholar 

  31. X. Xue, F. Wang, and X. Liu (2008). J. Am. Chem. Soc. 130, 3244.

    Article  CAS  PubMed  Google Scholar 

  32. J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem. 410, 4519.

    Article  CAS  PubMed  Google Scholar 

  33. S. Kaviya and E. Prasad (2014). ACS Sustain. Chem. Eng. 2, 699.

    Article  CAS  Google Scholar 

  34. N. Bonnia, M. Kamaruddin, M. Nawawi, S. Ratim, H. Azlina, and E. Ali (2016). Procedia Chem. 19, 594.

    Article  CAS  Google Scholar 

  35. A. Harborne Phytochemical Methods a Guide to Modern Techniques of Plant Analysis (Springer, Berlin, 1998).

    Google Scholar 

  36. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.

    Article  CAS  PubMed  Google Scholar 

  37. S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). New J. Chem 41, 14288.

    Article  CAS  Google Scholar 

  38. A. Patterson (1939). Phys. Rev. 56, 978.

    Article  CAS  Google Scholar 

  39. C. Jiang, S. Liu, W. He, X. Luo, S. Zhang, Z. Xiao, X. Qiu, and H. Yin (2012). Molecules 17, 657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. Yenesew, J. T. Kiplagat, S. Derese, J. O. Midiwo, J. M. Kabaru, M. Heydenreich, and M. G. Peter (2006). Phytochemistry 67, 988.

    Article  CAS  PubMed  Google Scholar 

  41. L.-R. Xu, J. Wu, and S. Zhang (2006). J. Asian Nat. Prod. Res. 8, 9.

    Article  CAS  PubMed  Google Scholar 

  42. Y. Takeda, K. Yano, H. Ayabe, T. Masuda, H. Otsuka, E. Sueyoshi, T. Shinzato, and M. Aramoto (2008). J. Nat. Med. 62, 476.

    Article  CAS  PubMed  Google Scholar 

  43. M. Nasrollahzadeh, S. M. Sajadi, E. Honarmand, and M. Maham (2015). New J. Chem. 39, 4745.

    Article  CAS  Google Scholar 

  44. V. Vidhu and D. Philip (2014). Micron 56, 54.

    Article  CAS  PubMed  Google Scholar 

  45. V. Vidhu and D. Philip (2014). Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 117, 102.

    Article  CAS  Google Scholar 

  46. D. Kang and M. Trenary (2000). Surf. Sci. 470, L13.

    Article  CAS  Google Scholar 

  47. D. C. Kalyani, A. A. Telke, S. P. Govindwar, and J. P. Jadhav (2009). Water Environ. Res. 81, 298.

    Article  CAS  PubMed  Google Scholar 

  48. T. Shen, C. Jiang, C. Wang, J. Sun, X. Wang, and X. Li (2015). RSC Adv. 5, 58704.

    Article  CAS  Google Scholar 

  49. B. Baruah, G. J. Gabriel, M. J. Akbashev, and M. E. Booher (2013). Langmuir 29, 4225.

    Article  CAS  PubMed  Google Scholar 

  50. T. Liu, J. X. Dong, S. G. Liu, N. Li, S. M. Lin, Y. Z. Fan, J. L. Lei, H. Q. Luo, and N. B. Li (2017). J. Hazard. Mater. 322, 430.

    Article  CAS  PubMed  Google Scholar 

  51. K. Z. Kamali, A. Pandikumar, S. Jayabal, R. Ramaraj, H. N. Lim, B. H. Ong, C. S. D. Bien, Y. Y. Kee, and N. M. Huang (2016). Microchimica Acta. 183, 369.

    Article  CAS  Google Scholar 

  52. P. Vasileva, T. Alexandrova and I. Karadjova (2017). J. Chem. 2017.

  53. L.-J. Huang, R.-Q. Yu, and X. Chu (2015). Analyst 140, 4987.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author (NC) is grateful to University Grants Commission (UGC), Government of India, New Delhi, India for providing financial assistance under the Faculty Development Programme. The authors are thankful to Inter-University Instrumentation Centre (DST-SAIF and DST-PURSE, Govt. of India) and School of Environmental Sciences, MGU (KSCSTE-SARD, VERC Project, Govt. of Kerala) for providing the instrumentation facility as well as other support. The authors are also thankful to Dr. A.P. Thomas, Director, ACESSD and Dr. C.T. Aravindakumar, Professor, SES-MGU for their valuable support for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sylas.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyril, N., George, J.B., Joseph, L. et al. Catalytic Degradation of Methyl Orange and Selective Sensing of Mercury Ion in Aqueous Solutions Using Green Synthesized Silver Nanoparticles from the Seeds of Derris trifoliata. J Clust Sci 30, 459–468 (2019). https://doi.org/10.1007/s10876-019-01508-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01508-9

Keywords

Navigation