Skip to main content
Log in

High Coverage CO Adsorption on Fe6O6 Cluster Using GGA + U

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The adsorption of CO molecules on Fe6O6 cluster was systematically studied at different coverage by GGA + U calculations and atomic thermodynamics. Starting from single CO molecule adsorption on Fe6O6 cluster, we have varied the concentration and configuration of CO molecules. It has been found that one surface iron atom of Fe6O6 cluster can coadsorb two CO molecules which can be explained well by the spatial effect. The phase diagrams show that twelve CO molecules binding on Fe6O6 cluster is favorable thermodynamically. It has been found that six CO molecules binding on Fe6O6 cluster is the saturation adsorption according to the stepwise adsorption energy, and the different adsorption states can coexist for two-CO molecules binding on Fe6O6 cluster at high temperature according to probability distribution plot. The adsorption mechanism of CO on Fe6O6 cluster was analyzed by the projected density of states and compared with Fe3O4 surfaces and other small iron oxide clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. C. F. R. Lund, E. K. Joseph, and J. A. Dumesic Solid State Chemistry in Catalysis, vol. 279 (American Chemical Society, Washington, DC, 1985), p. 313.

    Book  Google Scholar 

  2. C. Ratnasamy and J. Wagner (2009). Catal. Rev.51, 325.

    Article  CAS  Google Scholar 

  3. E. de Smit and B. Weckhuysen (2008). Chem. Soc. Rev.37, 2758.

    Article  PubMed  CAS  Google Scholar 

  4. E. de Smit, I. Swart, J. Creemer, G. Hoveling, M. Gilles, T. Tyliszczak, P. Kooyman, H. Zandbergen, C. Morin, and B. Weckhuysen (2008). Nature456, 222.

    Article  PubMed  CAS  Google Scholar 

  5. Z.-H. Lu and Q. Xu (2011). J. Chem. Phys.134, 034305.

    Article  PubMed  CAS  Google Scholar 

  6. J. H. Jang, J. G. Lee, H. Lee, Y. Xie, and H. F. Schaefer (1998). J. Phys. Chem. A102, 5298.

    Article  CAS  Google Scholar 

  7. Q. Li, Y.-N. Li, T. Wang, S.-G. Wang, C.-F. Huo, Y.-W. Li, J. Wang, and H. Jiao (2013). Chemphyschem14, 1573.

    Article  CAS  PubMed  Google Scholar 

  8. H. Wang, Y. Xie, R. B. King, and H. F. Schaefer (2006). J. Am. Chem. Soc.128, 11376.

    Article  CAS  PubMed  Google Scholar 

  9. C. Chi, H. Qu, L. Meng, F. Kong, M. Luo, and M. Zhou (2017). Angew. Chem. Int. Ed.56, 14096.

    Article  CAS  Google Scholar 

  10. X. Yu, X. Zhang, Y. Meng, Y. Zhao, Y. Li, W. Xu, and Z. Liu (2018). Appl. Surf. Sci.434, 464.

    Article  CAS  Google Scholar 

  11. M. Bortoluzzi, I. Ciabatti, C. Cesari, C. Femoni, M. C. Iapalucci, and S. Zacchini (2017). Eur. J. Inorg. Chem.2017, 3135.

    Article  CAS  Google Scholar 

  12. T. J. Udovic and J. A. Dumesic (1984). J. Catal.89, 314.

    Article  CAS  Google Scholar 

  13. D.-M. Huang, D.-B. Cao, Y.-W. Li, and H. Jiao (2006). J. Phys. Chem. B110, 13920.

    Article  CAS  PubMed  Google Scholar 

  14. M. Watanabe and T. Kadowaki (1987). Appl. Surf. Sci.28, 147.

    Article  CAS  Google Scholar 

  15. C. Chi, J.-Q. Wang, H. Qu, W.-L. Li, L. Meng, M. Luo, J. Li, and M. Zhou (2017). Angew. Chem. Int. Ed.56, 6932.

    Article  CAS  Google Scholar 

  16. H. Shiroishi, T. Oda, I. Hamada, and N. Fujima (2003). Eur. Phys. J D24, 85.

    Article  CAS  Google Scholar 

  17. H. Wu, S. R. Desai, and L.-S. Wang (1996). J. Am. Chem. Soc.118, 5296.

    Article  CAS  Google Scholar 

  18. L.-S. Wang, H. Wu, and S. R. Desai (1996). Phys. Rev. Lett.76, 4853.

    Article  CAS  PubMed  Google Scholar 

  19. A. Kirilyuk, A. Fielicke, K. Demyk, G. von Helden, G. Meijer, and T. Rasing (2010). Phys. Rev. B82, 020405.

    Article  CAS  Google Scholar 

  20. B. V. Reddy and S. N. Khanna (2004). Phys. Rev. Lett.93, 068301.

    Article  CAS  PubMed  Google Scholar 

  21. G. L. Gutsev, S. N. Khanna, B. K. Rao, and P. Jena (1999). Phys. Rev. A59, 3681.

    Article  CAS  Google Scholar 

  22. X. Yu, A. R. Oganov, Q. Zhu, F. Qi, and G.-R. Qian (2018). Phys. Chem. Chem. Phys. 20, 30437.

    Article  CAS  PubMed  Google Scholar 

  23. N. O. Jones, B. V. Reddy, F. Rasouli, and S. N. Khanna (2005). Phys. Rev. B72, 165411.

    Article  CAS  Google Scholar 

  24. X.-L. Ding, W. Xue, Y.-P. Ma, Z.-C. Wang, and S.-G. He (2009). J. Chem. Phys.130, 014303.

    Article  PubMed  CAS  Google Scholar 

  25. A. Erlebach, C. Huhn, R. Jana, and M. Sierka (2014). Phys. Chem. Chem. Phys.16, 26421.

    Article  CAS  PubMed  Google Scholar 

  26. G. L. Gutsev, K. G. Belay, L. G. Gutsev, and B. R. Ramachandran (2016). J. Comput. Chem.37, 2527.

    Article  CAS  PubMed  Google Scholar 

  27. A. Mejía-López, J. Mazo-Zuluaga, and J. Mejía-López (2016). J. Phys. Condens. Matter28, 485002.

    Article  PubMed  CAS  Google Scholar 

  28. B. V. Reddy, F. Rasouli, M. R. Hajaligol, and S. N. Khanna (2004). Chem. Phys. Lett.384, 242.

    Article  CAS  Google Scholar 

  29. B. V. Reddy, F. Rasouli, M. R. Hajaligol, and S. N. Khanna (2004). Fuel83, 1537.

    Article  CAS  Google Scholar 

  30. N. M. Reilly, J. U. Reveles, G. E. Johnson, S. N. Khanna, and A. W. Castleman Jr. (2007). Chem. Phys. Lett.435, 295.

    Article  CAS  Google Scholar 

  31. N. M. Reilly, J. U. Reveles, G. E. Johnson, S. N. Khanna, and A. W. Castleman (2007). J. Phys. Chem. A111, 4158.

    Article  CAS  PubMed  Google Scholar 

  32. N. M. Reilly, J. U. Reveles, G. E. Johnson, J. M. del Campo, S. N. Khanna, A. M. Köster, and A. W. Castleman (2007). J. Phys. Chem. C111, 19086.

    Article  CAS  Google Scholar 

  33. W. Xue, Z.-C. Wang, S.-G. He, Y. Xie, and E. R. Bernstein (2008). J. Am. Chem. Soc.130, 15879.

    Article  CAS  PubMed  Google Scholar 

  34. V. Chauhan, A. C. Reber, and S. N. Khanna (2017). Phys. Chem. Chem. Phys.19, 31940.

    Article  CAS  PubMed  Google Scholar 

  35. G. L. Gutsev, K. G. Belay, L. G. Gutsev, B. R. Ramachandran, and P. Jena (2018). Phys. Chem. Chem. Phys.20, 4546.

    Article  CAS  PubMed  Google Scholar 

  36. X. Yu, C.-F. Huo, Y.-W. Li, J. Wang, and H. Jiao (2012). Surf. Sci.606, 872.

    Article  CAS  Google Scholar 

  37. V. Anisimov, I. S. Elfimov, N. Hamada, and K. Terakura (1996). Phys. Rev. B54, 4387.

    Article  CAS  Google Scholar 

  38. R. Logemann, G. A. de Wijs, M. I. Katsnelson, and A. Kirilyuk (2015). Phys. Rev. B92, 144427.

    Article  CAS  Google Scholar 

  39. K. Palotás, A. N. Andriotis, and A. Lappas (2010). Phys. Rev. B81, 075403.

    Article  CAS  Google Scholar 

  40. X. Yu, X. Zhang, and X.-W. Yan (2018). Nano Res.11, 3574.

    Article  CAS  Google Scholar 

  41. S. López, A. H. Romero, J. Mejía-López, J. Mazo-Zuluaga, and J. Restrepo (2009). Phys. Rev. B80, 085107.

    Article  CAS  Google Scholar 

  42. H. J. Kulik and N. Marzari (2011). J. Chem. Phys.134, 094103.

    Article  PubMed  CAS  Google Scholar 

  43. X. Sun, M. Kurahashi, A. Pratt, and Y. Yamauchi (2011). Surf. Sci.605, 1067.

    Article  CAS  Google Scholar 

  44. G. S. Parkinson, N. Mulakaluri, Y. Losovyj, P. Jacobson, R. Pentcheva, and U. Diebold (2010). Phys. Rev. B82, 125413.

    Article  CAS  Google Scholar 

  45. M. Kurahashi, X. Sun, and Y. Yamauchi (2010). Phys. Rev. B81, 193402.

    Article  CAS  Google Scholar 

  46. N. Mulakaluri, R. Pentcheva, and M. Scheffler (2010). J. Phys. Chem. C114, 11148.

    Article  CAS  Google Scholar 

  47. N. Mulakaluri, R. Pentcheva, M. Wieland, W. Moritz, and M. Scheffler (2009). Phys. Rev. Lett.103, 176102.

    Article  PubMed  CAS  Google Scholar 

  48. X. Yu, Y. Li, Y.-W. Li, J. Wang, and H. Jiao (2013). J. Phys. Chem. C117, 7648.

    Article  CAS  Google Scholar 

  49. X. Yu, X. Zhang, and S. Wang (2015). Appl. Surf. Sci.353, 973.

    Article  CAS  Google Scholar 

  50. X. Yu, X. Zhang, S. Wang, and G. Feng (2015). RSC Adv.5, 45446.

    Article  CAS  Google Scholar 

  51. X. Yu, X. Tian, and S. Wang (2014). Surf. Sci.628, 141.

    Article  CAS  Google Scholar 

  52. X. Yu, X. Zhang, L. Jin, and G. Feng (2017). Phys. Chem. Chem. Phys.19, 17287.

    Article  CAS  PubMed  Google Scholar 

  53. X. Yu, S.-G. Wang, Y.-W. Li, J. Wang, and H. Jiao (2012). J. Phys. Chem. C116, 10632.

    Article  CAS  Google Scholar 

  54. G. Kresse and D. Joubert (1999). Phys. Rev. B59, 1758.

    Article  CAS  Google Scholar 

  55. G. Kresse and J. Furthmüller (1996). Comp. Mater. Sci.6, 15.

    Article  CAS  Google Scholar 

  56. G. Kresse and J. Furthmüller (1996). Phys. Rev. B54, 11169.

    Article  CAS  Google Scholar 

  57. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett.77, 3865.

    Article  CAS  PubMed  Google Scholar 

  58. P. E. Blöchl (1994). Phys. Rev. B50, 17953.

    Article  Google Scholar 

  59. V. Anisimov, J. Zaanen, and O. Andersen (1991). Phys. Rev. B44, 943.

    Article  CAS  Google Scholar 

  60. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen (1995). Phys. Rev. B52, R5467.

    Article  CAS  Google Scholar 

  61. R. Bliem, E. McDermott, P. Ferstl, M. Setvin, O. Gamba, J. Pavelec, M. A. Schneider, M. Schmid, U. Diebold, P. Blaha, L. Hammer, and G. S. Parkinson (2014). Science346, 1215.

    Article  CAS  PubMed  Google Scholar 

  62. H. J. Monkhorst and J. D. Pack (1976). Phys. Rev. B13, 5188.

    Article  Google Scholar 

  63. X. Yu, A. R. Oganov, I. A. Popov, and A. I. Boldyrev (2016). J. Comput. Chem.37, 103.

    Article  CAS  PubMed  Google Scholar 

  64. J. Heyd, G. E. Scuseria, and M. Ernzerhof (2003). J. Chem. Phys.118, 8207.

    Article  CAS  Google Scholar 

  65. J. Heyd and G. E. Scuseria (2004). J. Chem. Phys.121, 1187.

    Article  CAS  PubMed  Google Scholar 

  66. M. Nolan and G. W. Watson (2006). J. Phys. Chem. B110, 16600.

    Article  CAS  PubMed  Google Scholar 

  67. O. R. Gilliam, C. M. Johnson, and W. Gordy (1950). Phys. Rev.78, 140.

    Article  CAS  Google Scholar 

  68. D.-B. Cao, F.-Q. Zhang, Y.-W. Li, and H. Jiao (2004). J. Phys. Chem. B108, 9094.

    Article  CAS  Google Scholar 

  69. S. Bhattacharya, S. V. Levchenko, L. M. Ghiringhelli, and M. Scheffler (2013). Phys. Rev. Lett.111, 135501.

    Article  PubMed  CAS  Google Scholar 

  70. X. Yu, A. R. Oganov, I. A. Popov, G. Qian, and A. I. Boldyrev (2016). Angew. Chem. Int. Ed.55, 1699.

    Article  CAS  Google Scholar 

  71. X. Yu, X. Zhang, H. Wang, Z. Wang, and G. Feng (2017). J. Phys. Chem. C121, 22081.

    Article  CAS  Google Scholar 

  72. X. Yu, X. Zhang, H. Wang, and G. Feng (2017). Appl. Surf. Sci.425, 803.

    Article  CAS  Google Scholar 

  73. X. Yu and X. Zhang (2017). Phys. Chem. Chem. Phys.19, 18652.

    Article  CAS  PubMed  Google Scholar 

  74. X. Yu, C. Zhao, T. Zhang, and Z. Liu (2018). Phys. Chem. Chem. Phys.20, 20352.

    Article  CAS  PubMed  Google Scholar 

  75. X. Yu, X. Zhang, S. Wang, and G. Feng (2015). Appl. Surf. Sci.343, 33.

    Article  CAS  Google Scholar 

  76. W.-X. Li, C. Stampfl, and M. Scheffler (2003). Phys. Rev. Lett.90, 256102.

    Article  PubMed  CAS  Google Scholar 

  77. K. Reuter and M. Scheffler (2003). Phys. Rev. Lett.90, 46103.

    Article  CAS  Google Scholar 

  78. K. Reuter and M. Scheffler (2001). Phys. Rev. B65, 35406.

    Article  CAS  Google Scholar 

  79. E. L. Uzunova and H. Mikosch (2014). J. Chem. Phys.140, 024303.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 21603133, U1607105), National Science Foundation of Henan Province (No. 162300410001), Special Funding for Transformation of Scientic and Technological Achievements in Qinghai Province (No. 2018-GX-101) and Natural Science Foundation of Shaanxi University of Technology (No. SLGQD1809). This work was also supported by team of syngas catalytic conversion of Shaanxi University of Technology. Calculations were performed by using Hanren-Laojia supercomputer at Shaanxi University of Technology and high performance center National Supercomputer Center in Guangzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohu Yu or Zhong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2018_1485_MOESM1_ESM.doc

The computed less stable adsorption configurations of CO on Fe6O6; the full description of atomic thermodynamics methods (DOC 1700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Jin, L., Zhao, C. et al. High Coverage CO Adsorption on Fe6O6 Cluster Using GGA + U. J Clust Sci 31, 591–600 (2020). https://doi.org/10.1007/s10876-018-1485-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1485-0

Keywords

Navigation