Skip to main content
Log in

Green Synthesized Silver Nanoparticles and Their Impact on the Antioxidant Response and Histology of Indian Major Carp Labeo rohita, with Combined Response Surface Methodology Analysis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Biosynthesis of silver nanoparticles has received considerable attention due to their cost-effective, eco-friendly and medicinal values. In this study, silver nanoparticles (Ag NPs) were synthesised using the aqueous leaf extracts of Piper nigrum. TEM images revealed that the particle is spherical with 20–50 nm in size. Furthermore, to evaluate the toxicity of synthesized Ag NPs, fish Labeo rohita were exposed to two different concentrations (2.5 µg/L as the treatment I and 5 µg/L as treatment II) for 35 days, and antioxidant parameters and histology of gill, liver and kidney were examined. A biphasic response in the activity of glutathione S-transferases (GST) was observed in gill and liver of fish. GST activity in the kidney of fish was significantly increased when compared to control group. Glutathione reductase (GR) activity in organs/tissue of fish were found to be increased while peroxidase (POD) activity was significantly decreased. Histopathological changes such as hyperplasia, proliferation of epithelial cells and fusion of lamellae were observed in both the concentrations. In liver, necrosis, nuclear degeneration and dilation of sinusoids were observed. Subsequently, the representative effects of POD activity were assessed based on the Box–Behnken Equation, 3-D contour plot and ANOVA analysis through response surface methodology analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1–2.

    Article  CAS  Google Scholar 

  2. G. Benelli (2018). Acta Trop. 178, 73–80.

    Article  CAS  Google Scholar 

  3. J. J. Wu, G. J. Lee, Y. S. Chen, and T. L. Hu (2012). Curr. Appl. Phys. 12, S89–S95.

    Article  Google Scholar 

  4. E. Lombi, E. Donner, K. G. Scheckel, R. Sekine, C. Lorenz, N. V. Goetz, and B. Nowack (2014). Chemosphere 111, 352–358.

    Article  CAS  Google Scholar 

  5. B. Nowack, K. F. Krug, and M. Height (2011). Environ. Sci. Technol. 45, 1177–1183.

    Article  CAS  Google Scholar 

  6. R. M. S. T. Azarudeen, M. Govindarajan, A. Amsath, U. Muthukumaran, and G. Benelli (2017). J. Clust. Sci. 28, 179–203.

    Article  CAS  Google Scholar 

  7. J. Dobson (2006). Nanomedicine 1, 31–37.

    Article  CAS  Google Scholar 

  8. SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risk) (2014). European Commission, Luxembourg.

  9. S. Shankar and J. W. Rhim (2015). Carbohydr. Polym. 130, 353–363.

    Article  CAS  Google Scholar 

  10. B. Paul, B. Bhuyan, D. D. Purkayastha, and S. S. Dhar (2016). J. Photochem. Photobiol. B 154, 1–7.

    Article  CAS  Google Scholar 

  11. G. Benelli, F. Maggi, R. Pavela, et al. (2017). Environ. Sci. Pollut. Res 1–23.

  12. G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3–10.

    Article  CAS  Google Scholar 

  13. V. Kumar, D. K. Singh, S. Mohan, and S. H. Hasan (2016). J. Photochem. Photobiol. B 155, 39–50.

    Article  CAS  Google Scholar 

  14. G. Nahak and R. K. Sahu (2011). J. Appl. Pharma. Sci. 01, 153–157.

    Google Scholar 

  15. A. K. Tripathy, D. C. Jain, and S. Kumar (1996). J. Med. Aromat. Plant Sci. 18, 302–321.

    Google Scholar 

  16. N. Jayaprakash, J. J. Vijaya, L. J. Kennedy, K. Priadharsini, and P. Palani (2014). Mater. Lett. 137, 358–361.

    Article  CAS  Google Scholar 

  17. B. Mohapatra, S. Kuriakose, and S. Mohapatra (2015). J. Alloys Compd. 637, 119–126.

    Article  CAS  Google Scholar 

  18. K. D. Raner, C. R. Strauss, F. Vyskoc, and L. Mokbel (1997). J. Org. Chem. 58, 950.

    Article  Google Scholar 

  19. S. A. Galema (1997). Chem. Soc. Rev. 26, 233.

    Article  CAS  Google Scholar 

  20. P. V. Luoma (2008). Eur. J. Clin. Pharmacol. 64, 841–850.

    Article  CAS  Google Scholar 

  21. S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, and J. R. Lead (2008). Environ. Toxicol. Chem. 27, 1825–1851.

    Article  CAS  Google Scholar 

  22. C. Carlson, S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, and J. J. Schlager (2008). J. Phys. Chem. B 112, 13608–13619.

    Article  CAS  Google Scholar 

  23. P. Gopinath, S. K. Gogoi, A. Chattopadhyay, and S. S. Ghosh (2008). Nanotechnology 19, 075104.

    Article  CAS  Google Scholar 

  24. E. I. Mahdy, T. A. S. Eldin, H. S. Alyd, F. F. Mohammed, and M. I. Shaalan (2015). Exp. Toxicol. Pathol. 67, 21–29.

    Article  Google Scholar 

  25. M. Govindarajan, S. L. Hoti, M. Rajeswary, and G. Benelli (2017). Parasitol. Res. 115, 2685–2695.

    Article  Google Scholar 

  26. M. Govindarajan, M. Rajeswary, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli (2016). J. Photochem. Photobiol. B: Biol. 161, 482–489.

    Article  CAS  Google Scholar 

  27. M. Govindarajan, H. F. Khater, C. Panneerselvam, and G. Benelli (2016). Res. Veter. Sci. 107, 95–101.

    Article  CAS  Google Scholar 

  28. M. Govindarajan and G. Benelli (2016). Parasitol. Res. 115, 925–935.

    Article  Google Scholar 

  29. G. Oberdörster, E. Oberdörster, and J. Oberdörster (2005). Environ. Health. Perspect. 113, 823–839.

    Article  Google Scholar 

  30. K. Murugan, D. Nataraj, P. Madhiyazhagan, et al. (2016). Parasitol. Res. 115, 1071–1083.

    Article  Google Scholar 

  31. R. Ishwarya, B. Vaseeharan, S. Shanthi, et al. (2017). J. Clust. Sci 28, 519–527.

    Article  CAS  Google Scholar 

  32. B. Chandramohan, K. Murugan, C. Panneerselvam, et al. (2016). Parasitol. Res. 15, 1015–1025.

    Article  Google Scholar 

  33. V. Sujitha, K. Murugan, D. Dinesh, et al. (2017). Aquat. Toxicol. 188, 100–108.

    Article  CAS  Google Scholar 

  34. P. V. Asharani, N. G. Serina, M. H. Nurmawati, Y. L. Wu, Z. Gong, and S. Valiyaveettil (2008). J. Nanosci. Nanotechnol. 8, 3603–3609.

    Article  CAS  Google Scholar 

  35. Y. J. Chae, C. H. Pham, J. Lee, E. Bae, J. Yi, and M. B. Gu (2009). Aquat. Toxicol. 94, 320–327.

    Article  CAS  Google Scholar 

  36. M. S. Khan, F. Jabeen, N. A. Qureshi, M. S. Asghar, M. Shakeel, and A. Noureen (2015). J. Biodivers. Environ. Sci. 6, 211–227.

    Google Scholar 

  37. K. S. Rajkumar, N. Kanipandian, and R. Thirumurugan (2016). Appl. Nanosci. 6, 19–29.

    Article  CAS  Google Scholar 

  38. M. S. Khan, N. A. Qureshi, and F. Jabeen (2017). Appl. Nanosci. 7, 167–179.

    Article  CAS  Google Scholar 

  39. R. Govindasamy and A. A. Rahuman (2012). J. Environ. Sci. 24, 1091–1098.

    Article  CAS  Google Scholar 

  40. V. Vignesh, K. F. Anbarasi, S. Karthikeyeni, G. Sathiyanarayanan, P. Subramanian, and R. Thirumurugan (2013). Colloids. Surf A. Physicochem. Eng. Asp. 439, 184–192.

    Article  CAS  Google Scholar 

  41. C. Krishnaraj, L. Stacey, B. Harper, and S. Yun (2016). J. Hazard. Mater. 301, 480–491.

    Article  CAS  Google Scholar 

  42. D. J. Finney, 3rd Ed (Charles Griffin, London, 1978).

  43. W. H. Habig, M. J. Pabst, and W. B. Jakobi (1974). J. Biol. Chem. 249, 7130–7139.

    CAS  Google Scholar 

  44. M. David and J. S. Richard (1983). J Mariare GB (Ed) Verlag Chemic Weinheina Dec Field Beach Florida based P, 358.

  45. K. P. Reddy, S. M. Subhani, P. A. Khan, and K. B. Kumar (1995). Plant. Cell. Physiol. 26, 987–994.

    Article  Google Scholar 

  46. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951). J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  47. D. Bancroft and A. Stevens (Churchill Livingstone, Edinburgh, London, 1982), p. 262.

  48. G. Hanrahan and K. Lu (2006). Crit. Rev. Anal. Chem. 36, 141–151.

    Article  CAS  Google Scholar 

  49. K. Vijayarahavan, S. P. Kamala Nalini, N. Udaya Prakash, and D. Madhankumar (2012). Colloids Surf. B 94, 114–117.

    Article  Google Scholar 

  50. D. S. Sheny, J. Mathew, and D. Philip (2011). Spectrochim. Acta. Part A 79, 254–262.

    Article  CAS  Google Scholar 

  51. A. Annamalai, S. T. Babu, N. A. Jose, D. Sudha, and C. V. Lyza (2011). World Appl. Sci. J. 13, 1833–1840.

    Google Scholar 

  52. D. Philip, C. Unni, S. Aromal, and V. K. Vidhu (2011). Spectrochim. Acta. Part A 78, 899–904.

    Article  Google Scholar 

  53. V. Kathiravan, S. Ravi, and S. Ashokkumar (2014). Spectrochim. Acta. Part A 130, 116–121.

    Article  CAS  Google Scholar 

  54. P. K. Kumar, W. Paul, and C. P. Sharma (2012). J. BioNanoSci. 2, 144–152.

    Article  Google Scholar 

  55. L. Salido, D. C. Lim, and Y. D. Kim (2005). Surf. Sci. 588, 6.

    Article  Google Scholar 

  56. Y. Tian, F. Wang, Y. Liu, F. Pang, and X. Zhang (2014). Electrochim. Acta 146, 646–653.

    Article  CAS  Google Scholar 

  57. P. Usha Rani and P. Rajasekharreddy (2011). Colloids Surf. A 389, 188–194.

    Article  CAS  Google Scholar 

  58. C. Toni, D. Ferreira, L. C. Kreutz, V. L. Loro, and L. G. Barcellos (2011). Chemosphere 83, 579–584.

    Article  CAS  Google Scholar 

  59. Z. H. Li, V. Zlabek, P. Li, R. Grabic, J. Velisek, J. Machova, and T. Randak (2010). Ecotoxicol. Environ. Saf. 73, 1391–1396.

    Article  CAS  Google Scholar 

  60. J. F. Zhang, H. Liu, Y. Y. Sun, X. R. Wang, J. C. Wu, and Y. Q. Xue (2005). Environ. Toxicol. Pharmacol. 19, 185–190.

    Article  CAS  Google Scholar 

  61. A. Malarvizhi, M. Saravanan, R. K. Poopal, J. H. Hur, and M. Ramesh (2017). Water Air Soil Pollut. 228, 310.

    Article  Google Scholar 

  62. V. I. Lushchak (2014). Chem. Biol. Interact. 224C, 164–175.

    Article  Google Scholar 

  63. D. Dolphin, R. Poulson and O. Avramovic, vol. III (Part A and Part B) (Wiley, New York, 1989).

  64. S. Paraschiv, M. C. Munteanu, D. Dinu, M. R. Luca, M. Costache, C. Tesio, and A. Dinischiotu (2006). Rev. Roum. Chim. 51, 1175–1179.

    CAS  Google Scholar 

  65. M. Radu, S. Petrache, A. I. Serban, D. Dinu, A. Hermenean, C. Sima, and A. Dinischiotu (2010). Acta. Biochim. Pol. 57, 355.

    CAS  Google Scholar 

  66. M. Eyckmans, N. Celis, N. Horemans, R. Blust, and G. De Boeck (2011). Aquat. Toxicol. 103, 112–120.

    Article  CAS  Google Scholar 

  67. K. Srikanth, I. Ahmad, J. V. Rao, T. Trindade, A. C. Duarte, and E. Pereira (2014). Comp. Biochem. Physiol. Part C 162, 7.

    CAS  Google Scholar 

  68. Y. Z. Fang and R. L. Zheng (Science Press, Beijing, 2002), p. 122.

  69. C. Jayaseelan, A. A. Rahuman, R. Ramkumar, P. Perumal, G. Rajakumar, A. VishnuKirthi, T. Santhoshkumar, and S. Marimuthu (2014). Ecotoxicol. Environ. Saf. 107, 220–228.

    Article  CAS  Google Scholar 

  70. E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, and R. Behra (2008). Environ. Sci. Technol. 42, 8959–8964.

    Article  CAS  Google Scholar 

  71. L. V. Stebounova, E. Guio, and V. H. Grassian (2011). J. Nanopart. Res. 13, 233–244.

    Article  CAS  Google Scholar 

  72. A. Kedziora, K. Gorzelanczyk, and G. B. Płoskonska (2013). Biol. Int. 53, 67–76.

    Google Scholar 

  73. I. M. Garrido, S. Perez, and J. Blasco (2015). Mar. Environ. Res. 111, 60–73.

    Article  Google Scholar 

  74. A. Hedayathi, H. Kolangi, A. Jahanbakhshi, and E. F. Shalu (2012). Bulg. J. Vet. Med. 15, 172–177.

    Google Scholar 

  75. A. Slaninova, M. Smutna, H. Modra, and Z. Svobodova (2009). Neuro. Endocrinol. Lett. 30, 2–12.

    CAS  Google Scholar 

  76. R. J. Griffitt, K. Hyndman, N. D. Denslow, and D. S. Barber (2009). Toxicol. Sci. 107, 404–415.

    Article  CAS  Google Scholar 

  77. G. P. Devi, K. B. A. Ahmed, B. S. Sai Varsha, M. K. N. Shrijha, K. K. S. Lal, V. Anbazhagan, and R. Thiagarajan (2015). Aquat. Toxicol. 158, 149–157.

    Article  CAS  Google Scholar 

  78. T. W. Schultz and M. T. D. Cronin (1999). J. Chem. Inf. Comput. Sci. 39, 304-309.

    Article  CAS  Google Scholar 

  79. S. Ren (2003). J. Chem. Inf. Comput. Sci. 43, 1679–1687.

    Article  CAS  Google Scholar 

  80. R. Guo, X. Ren, and H. Ren (2012). J. Hazard. Mater. 237, 270–276.

    Article  Google Scholar 

  81. M. Khosravi and S. Arabi (2016). Water Sci. Technol. 74, 343–352.

    Article  CAS  Google Scholar 

  82. C. Sudhakar, K. Selvam, M. Govarthanan, B. Senthilkumar, A. Sengottaiyan, M. Stalin, and T. Selvankumar (2015). J. Genet. Eng. Biotechnol. 13, 93–99.

    Article  Google Scholar 

  83. M. Govarthanan, R. Mythili, T. Selvankumar, S. Kamala-Kannan, D. Choi, and Y. Chang (2017). Biotechnol. Bioproc. Eng. 22, 186–194.

    Article  CAS  Google Scholar 

  84. K. P. Gopinath, K. Muthukumar, and M. Velan (2010). J. Chem. Eng. 157, 427–433.

    Article  CAS  Google Scholar 

  85. P. C. Giloni-Lima, D. Delello, M. L. M. Cremonez, V. A. Eler, M. N. Lima, and E. L. G. Espindola (2010). Ecotoxicology 19, 1095–1101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathan Ramesh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobana, C., Rangasamy, B., Surendran, S. et al. Green Synthesized Silver Nanoparticles and Their Impact on the Antioxidant Response and Histology of Indian Major Carp Labeo rohita, with Combined Response Surface Methodology Analysis. J Clust Sci 29, 267–279 (2018). https://doi.org/10.1007/s10876-017-1328-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1328-4

Keywords

Navigation