Skip to main content
Log in

Excited State Relaxation and Stabilization of Hydrogen Terminated Silicon Quantum Dots

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Silicon is the leading semiconductor material in microelectronic industry. Owing to the large surface to volume ratio, low-dimensional Si nanostructures, for instance, silicon quantum dots exhibit diverse electronic and optical properties. Passivating the surface of Si nanostructures by a suitable species is thereby required to stabilize and engineer the dot properties in different environment. Recent theoretical advances in the investigation of the excited state properties of silicon quantum dots (QDs) are reviewed in this article. The theoretical calculations reveal that the excited state relaxation is prevalent in hydrogenated silicon nanoparticles. Stokes shift due to structure relaxation in the excited state varies with the particle size. It is therefore desirable to minimize Stokes shift for the purpose of maximizing its quantum yield or efficiency in photoluminescence applications. Consequently, surface functionalization by a suitable species turns out to be the most effective avenue. Determination of proper passivating agent is of outmost importance to satisfy the practical necessity. All these intermingled factors are briefly addressed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Fowler (1997). Phys. Today 50, 10.

    Article  Google Scholar 

  2. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet (1996). Nature (London) 384, 338.

    Article  CAS  Google Scholar 

  3. R. Q. Zhang, J. Costa, and E. Bertran (2005). Phys. Rev. B 53, 7847.

    Article  Google Scholar 

  4. D. K. Yu, R. Q. Zhang, and S. T. Lee (2002). Phys. Rev. B 65, 245417.

    Article  Google Scholar 

  5. X. Wang, R. Q. Zhang, T. A. Niehaus, Th. Frauenheim, and S. T. Lee (2007). J. Phys. Chem. C 111, 12588.

    Article  CAS  Google Scholar 

  6. Q. S. Li, R. Q. Zhang, S. T. Lee, T. A. Niehaus, and Th. Frauenheim (2008). J. Chem. Phys. 128, 244714.

    Article  CAS  Google Scholar 

  7. B. Delley and E. F. Steigmeier (1993). Phys. Rev. B 47, 1397.

    Article  CAS  Google Scholar 

  8. S. Y. Ren and J. D. Dow (1992). Phys. Rev. B 45, 6492.

    Article  CAS  Google Scholar 

  9. M. Hirao and T. Uda (1994). Surf. Sci. 306, 87.

    Article  CAS  Google Scholar 

  10. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli (2003). J. Am. Chem. Soc. 125, 2786.

    Article  CAS  Google Scholar 

  11. C. S. Garoufalis and Aristides. D. Zdetsis (2001). Phys Rev. Lett. 87, 276402.

    Article  CAS  Google Scholar 

  12. J. R. Chelikowsky, L. Kronik, and I. Vasiliev (2003). J. Phys. Condens. Matter 15, R1517.

    Article  CAS  Google Scholar 

  13. D. Prendergast, J. C. Grossman, and A. J. Williamson (2004). J. Am. Chem. Soc. 126, 13827.

    Article  CAS  Google Scholar 

  14. M. Hirao and T. Uda (1994). Int. J. Quantum Chem. 52, 1113.

    Article  CAS  Google Scholar 

  15. A.R. Porter, M.D. Towler, and R. Needs (2001). J. Phys. Rev. B 64, 035320.

    Google Scholar 

  16. H.-Ch. Weissker, J. Furthmüller, and F. Bechstedt (2002). Phys. Rev. B 65, 155328.

    Article  Google Scholar 

  17. G. Onida, L. Reining, and A. Rubio (2002). Rev Mod. Phys. 74, 601.

    Article  CAS  Google Scholar 

  18. P. H. Hahn, W. G. Schmidt, and F. Bechstedt (2005). Phys. Rev. B 72, 245425.

    Article  Google Scholar 

  19. L. X. Benedict, A. Puzder, A. J. Williamson, J. C. Grossman, G. Galli, J. E. Klepeis, J.-Y. Raty, and O. Pankratov (2003). Phys. Rev. B 68, 085310.

    Article  Google Scholar 

  20. I. Vasiliev (2003). Phys. Status Solidi B 239, 19.

    Article  CAS  Google Scholar 

  21. I. Vasiliev, S. Ogut, and J. R. Chelikowsky (2001). Phys Rev. Lett. 86, 1813.

    Article  CAS  Google Scholar 

  22. O. Lehtonen and D. Sundholm (2005). Phys. Rev. B 72, 085424.

    Article  Google Scholar 

  23. A. J. Williamson, J. C. Grossman, R. Q. Hood, A. Puzder, and G. Galli (2002). Phys. Rev. Lett. 89, 196803.

    Article  Google Scholar 

  24. E. Degoli, G. Cantele, E. Luppi, R. Magri, D. Ninno, O. Bisi, and S. Ossicini (2004). Phys. Rev. B 69, 155411.

    Article  Google Scholar 

  25. E. Luppi, E. Degoli, G. Cantele, S. Ossicini, R. Magri, D. Ninno, O. Bisi, O. Pulci, G. Onida, M. Gatti, A. Incze, and E. D. Sole (2005). Opt Mater. 27, 1008.

    Article  CAS  Google Scholar 

  26. D. Porezag, Th. Frauenheim, Th. Kǒhler, G. Seifert, and R. Kaschner (1995). Phys. Rev. B 51, 947.

    Article  Google Scholar 

  27. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, and G. Seifert (1998). Phys. Rev. B 58, 7260.

    Article  CAS  Google Scholar 

  28. T. A. Niehaus, S. Suhai, F. D. Sala, P. Lugli, M. Elstner, G. Seifert, and Th. Frauenheim (2001). Phys. Rev. B 63, 085108.

    Article  Google Scholar 

  29. T.A. Niehaus (2009). J. Mol. Struct. THEOCHEM 914, 38.

    Article  CAS  Google Scholar 

  30. M.E. Casida (1995). In recent advances. In: D. Chong (ed.), Density Functional Methods, Part I (World Scientific, Singapore, 1995), pp. 155–192.

  31. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  32. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  33. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A. D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, A. Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh, PA, 2003.

  34. F. Fehér, MolekülspektroskopischeUntersuchungen auf demGebiet der Silane und der heterocyclischenSulfane, Forschungsbericht des Landes Nordrhein-Westfalen (Westdeutscher Verlag, Köln, 1977)

  35. A. D. Zdetsis (2006). Rev Adv. Mater. Sci. 11, 56.

    CAS  Google Scholar 

  36. G. S. Garoufalis and A. D. Zdetsis (2001). Phys Rev. Lett. 87, 276402.

    Article  CAS  Google Scholar 

  37. X. Wang, R. Q. Zhang, S. T. Lee, T. A. Niehaus, and Th. Frauenheim (2007). Appl. Phys. Lett. 90, 123116.

    Article  Google Scholar 

  38. J. Valenta, A. Fucikova, I. Pelant, K. Küsová, K. Dohnalová, A. Aleknavičius, O. Cibulka, A. Fojtík, and G. Kada (2008). New J. Phys. 10, 073022.

    Article  Google Scholar 

  39. M. L. del Puerto, M. Jain, and J. R. Chelikowski (2010). Phys. Rev. B 81, 035309.

    Article  Google Scholar 

  40. Q. S. Li, R. Q. Zhang, S. T. Lee, T. A. Niehaus, and Th. Frauenheim (2007). Appl Phys. Lett. 91, 043106.

    Article  Google Scholar 

  41. X. Wang, R. Q. Zhang, T. A. Niehaus, and Th. Frauenheim (2007). J. Phys. Chem. C. 111, 2394.

    Article  CAS  Google Scholar 

  42. Q. S. Li, R. Q. Zhang, S. T. Lee, T. A. Niehaus, and Th. Frauenheim (2008). Appl Phys. Lett. 92, 053107.

    Article  Google Scholar 

  43. M. X. He, R. Q. Zhang, T. A. Niehaus, Th. Frauenheim, and S. T. Lee (2009). J. Theory Comput. Chem. 8, 299.

    Article  CAS  Google Scholar 

  44. Q. S. Li, R. Q. Zhang, T. A. Niehaus, Th. Frauenheim, and S. T. Lee (2007). J. Chem. Theory Comput. 3, 1518.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Qin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Wang, X., Li, QS. et al. Excited State Relaxation and Stabilization of Hydrogen Terminated Silicon Quantum Dots. J Clust Sci 24, 381–397 (2013). https://doi.org/10.1007/s10876-013-0551-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0551-x

Keywords

Navigation