Skip to main content
Log in

Application of Solid-State Molybdenum Sulfide Clusters with an Octahedral Metal Framework to Catalysis: Ring-Opening of Tetrahydrofuran to Butyraldehyde

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. The cluster of copper salt, Cu x Mo6S8 (x = 2.94), stored in air is treated in a hydrogen stream above 300 °C. The activated cluster exhibits catalytic activity for the ring-opening of tetrahydrofuran, yielding butyraldehyde. Cyclic ethers such as trimethylene oxide and tetrahydropyran are also converted to the corresponding aldehydes. The cluster contains nonstoichiometric defects of sulfur atoms. Oxygen atoms are incorporated at the sulfur-deficient sites upon storage in air, but they are removed from the sites by the activation in a hydrogen stream. The resulting coordinatively unsaturated molybdenum atoms are catalytically active for the ring-opening reaction. The molybdenum atom in an intermediate oxidation state around 2+ is moderately coordinated by the oxygen of tetrahydrofuran and favorably releases the produced aldehyde. The neutral cluster Mo6S8, which has such sulfur-deficient sites, also catalyzes the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. F. A. Cotton, T. Hughbanks, C. E. Runyan Jr., and W. A. Wojtczak in M. H. Chisholm (ed.), Early transition metal clusters with π-donor ligands chapter 1 (VCH Publishers, New York, 1995), pp. 1–26.

    Google Scholar 

  2. T. Saito in M. H. Chisholm (ed.), Early Transition Metal Clusters with π-Donor Ligands, Chapter 3 (VCH Publishers, New York, 1995), pp. 63–164.

    Google Scholar 

  3. S. C. Lee and R. H. Holm (1990). Angew. Chem. Int. Ed. Engl. 29, 840.

    Article  Google Scholar 

  4. J. D. Corbett (1995). J. Alloys Compd. 229, 10.

    Article  CAS  Google Scholar 

  5. T. Saito (1997). Adv. Inorg. Chem. 44, 45.

    Article  CAS  Google Scholar 

  6. W. Blomstrand (1859). J. Prakt. Chem. 77, 88.

    Article  Google Scholar 

  7. S. Kamiguchi, S. Nishida, I. Takahashi, H. Kurokawa, H. Miura, and T. Chihara (2006). J. Mol. Catal. A 255, 117.

    Article  CAS  Google Scholar 

  8. S. Nagashima, S. Kamiguchi, S. Ohguchi, and T. Chihara (2010). Chem. Eng. J. 161, 384.

    Article  CAS  Google Scholar 

  9. S. Kamiguchi, S. Nagashima, and T. Chihara (2007). Chem. Lett. 36, 1340.

    Article  CAS  Google Scholar 

  10. S. Kamiguchi, N. Ikeda, S. Nagashima, H. Kurokawa, H. Miura, and T. Chihara (2009). J. Clust. Sci. 20, 683.

    Article  CAS  Google Scholar 

  11. R. Chevrel, M. Sergent, and J. Prigent (1971). J. Solid State Chem. 3, 515.

    Article  CAS  Google Scholar 

  12. Ø. Fischer and M. B. Maple (eds.) Superconductivity in Ternary Compounds I, Topics in current physics 32 (Springer, Berlin, 1982).

    Google Scholar 

  13. M. B. Maple and Ø. Fischer (eds.) Superconductivity in Ternary Compounds II, Topics in current physics 34 (Springer, Berlin, 1982).

    Google Scholar 

  14. K. F. McCarty and G. L. Schrader (1984). Int. Eng. Chem. Prod. Res. Dev. 23, 519.

    Article  CAS  Google Scholar 

  15. K. Yvon in Ø. Fischer and M. B. Maple (eds.), Superconductivity in Ternary Compounds I, Topics in current physics 32, Chapter 3 (Springer, Berlin, 1992), pp. 87–111.

    Google Scholar 

  16. K. Tanaka (1985). Adv. Catal. 33, 99.

    Article  CAS  Google Scholar 

  17. Y. Saih and K. Segawa (2003). Catal. Surv. Asia 7, 235.

    Article  CAS  Google Scholar 

  18. H. Topsøe, B. Hinnemann, J. K. Nørskov, J. V. Lauritsen, F. Besenbacher, P. L. Hansen, G. Hytoft, R. G. Egeberg, and K. G. Knudsen (2005). Catal. Today 107–108, 12.

    Article  Google Scholar 

  19. R. Chianelli, M. Siadati, M. Perez de la Rosa, G. Berhault, J. Wilcoxon, R. Bearden, and B. Abrams (2006). Catal. Rev. 48, 1–41.

    Article  CAS  Google Scholar 

  20. M. Wakihara, H. Hinode, and C. Inoue (1992). Solid State Ionics 53–56, 413.

    Article  Google Scholar 

  21. T. J. Paskach, G. L. Schrader, and R. E. McCarley (2002). J. Catal. 211, 285.

    CAS  Google Scholar 

  22. N. I. Shuikin and I. F. Bel’skii (1958). Proc. Acad. Sci. USSR 120, 391.

    Google Scholar 

  23. M. Rabiller-Baudry, M. Sergent, and R. Chevrel (1991). Mat. Res. Bull. 26, 519.

    Article  CAS  Google Scholar 

  24. E. Gocke, R. Schöllhorn, G. Aselmann, and W. Müller-Warmuth (1987). Inorg. Chem. 26, 1805.

    Article  CAS  Google Scholar 

  25. V. Harel-Michaud, G. Pesnel-Leroux, L. Burel, R. Chevrel, C. Geantet, M. Cattenot, and M. Vrinat (2001). J. Alloys Compd. 317–318, 195.

    Article  Google Scholar 

  26. R. J. Behlok and W. R. Robinson (1983). Mat. Res. Bull. 18, 1069.

    Article  CAS  Google Scholar 

  27. G. F. Froment (2008). Catal. Rev. 50, 1.

    Article  CAS  Google Scholar 

  28. E. Furimsky (1983). Ind. Chem. Prod. Res. Dev. 22, 34–38.

    Article  CAS  Google Scholar 

  29. J. Chao, K. R. Hall, K. N. Marsh, and R. C. Wilhoit (1986). J. Phys. Chem. Ref. Data 15, 1369.

    Article  CAS  Google Scholar 

  30. J. B. Pedley Thermodynamic Data and Structures of Organic Compounds Vol. 1 (Thermocynamics Research Center, College Station, 1994).

    Google Scholar 

  31. G. da Silva and J. W. Bozzelli (2006). J. Phys. Chem. 110, 13058.

    Article  CAS  Google Scholar 

  32. R. Chevrel, M. Sergent, and J. Prigent (1974). Mater. Res. Bull. 9, 1487.

    Article  CAS  Google Scholar 

  33. M. Taniguchi, M. Wakihara, and S. K. Basu (1989). Solid State Ionics 32–33, 273.

    Article  Google Scholar 

  34. R. Cerny, K. Yvon, M. Wakihara, and P. J. Fischer (1994). Alloys Compd. 209, L29.

    Article  CAS  Google Scholar 

  35. M. V. Akhmanova, G. I. Malofeeva, and N. P. Andreeva (1978). Russ. J. Inorg. Chem. 23, 18.

    CAS  Google Scholar 

  36. K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic and Bioinorganic Chemistry, 5th ed (Wiley, New York, 1997), pp. 53–57.

    Google Scholar 

  37. D. C. Lacy, R. Gupta, K. L. Stone, J. Greaves, J. W. Ziller, M. P. Hendrich, and A. S. Borovik (2010). J. Am. Chem. Soc. 132, 12188.

    Article  CAS  Google Scholar 

  38. F. Lanucara and M. E. Crestoni (2011). Chem. Eur. J. 17, 12092.

    Article  CAS  Google Scholar 

  39. P. Liu, Y. M. Choi, Y. Yang, and M. G. White (2010). J. Phys. Chem. A 114, 3888.

    Article  CAS  Google Scholar 

  40. Q. Guo, T. Miyaji, R. Hara, B. Shen, and T. Takahashi (2002). Tetrahedron 58, 7327.

    Article  CAS  Google Scholar 

  41. H. Alper and C.-C. Huang (1973). J. Org. Chem. 38, 64.

    Article  CAS  Google Scholar 

  42. F. A. Cotton, P. E. Fanwick, R. H. Niswander, and J. C. Sekutowski (1978). Acta Chem. Scand. A 32, 663.

    Article  Google Scholar 

  43. R. E. Palermo and R. H. Holm (1983). J. Am. Chem. Soc. 105, 4310.

    Article  CAS  Google Scholar 

  44. J. H. Burk, G. E. Whitwell, J. T. Lemley, and J. M. Burlitch (1983). Inorg. Chem. 22, 1306.

    Article  CAS  Google Scholar 

  45. J. Han, M. Koutmos, S. A. Ahmad, and D. Coucouvanis (2001). Inorg. Chem. 40, 5985.

    Article  CAS  Google Scholar 

  46. M. Koutmos, I. P. Georgakaki, P. Tsiolis, and D. Coucouvanis (2008). Z. Anorg. Allg. Chem. 634, 255.

    Article  CAS  Google Scholar 

  47. R. B. Quincy, M. Houalla, A. Proctor, and D. M. Hercules (1990). J. Phys. Chem. 94, 1520.

    Article  CAS  Google Scholar 

  48. D. S. Zingg, L. E. Makovsky, R. E. Tischer, F. R. Brown, and D. M. Hercules (1980). J. Phys. Chem. 84, 2898.

    Article  CAS  Google Scholar 

  49. E. Lancry, E. Levi, Y. Gofer, M. D. Levi, and D. Aurbach (2005). J. Solid State Electr. 9, 259.

    Article  CAS  Google Scholar 

  50. E. H. M. Badger, R. H. Griffith, and W. B. S. Newling (1949). Proc. R. Soc. London, Ser. A 197, 184.

    Article  CAS  Google Scholar 

  51. K. Suzuki, M. Soma, T. Onishi, and K. Tamaru (1981). J. Electron Spectrosc. 24, 283.

    Article  CAS  Google Scholar 

  52. P. Sobota, T. Pluzinski, and B. Jezowska-Trzebiatowska (1980). J. Organometal. Chem. 185, 69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. M. Ohshima (Saitama University) for the measurement of XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kamiguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiguchi, S., Takeda, K., Kajio, R. et al. Application of Solid-State Molybdenum Sulfide Clusters with an Octahedral Metal Framework to Catalysis: Ring-Opening of Tetrahydrofuran to Butyraldehyde. J Clust Sci 24, 559–574 (2013). https://doi.org/10.1007/s10876-012-0534-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0534-3

Keywords

Navigation