Skip to main content
Log in

Synthesis and Characterization of Nanocrystalline MoSi2 by Mechanical Alloying and Heat Treating

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In order to synthesize nanocrystalline MoSi2, pure molybdenum and silicone powders were milled using an attritor mill with the molar ratio of Mo:Si being equal to 1:2. Mechanically alloyed (MAed) powders were heated in an atmosphere controlled furnace at various temperatures and holding times. The nanopowder characteristics were evaluated by field emission scanning electron microscopy, X-ray diffraction technique, and differential thermal analysis. The obtained results were compared for all prepared samples. The results did not confirm the presence of any related intermetallics after MA. However, Mo5Si3 was formed during heating at 900 °C. An increase in temperature caused the enhancement of the volume fraction of Mo5Si3 and formation of MoSi2. Further heating at 1,100 °C caused the enhancement of the volume fraction of MoSi2, while that of Mo5Si3 was decreased, as during heating at 1,100 °C for 7 h the volume fraction of Mo5Si3 was negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Darolia, J. Lewandowski, C. Liu, P. Martin, D. Miracle, and M. Nathal Structural Intermetallics (The Minerals Metals and Materials Society, USA, 1993).

    Google Scholar 

  2. M. Yamaguchi, H. Inui, and K. Ito (2000). High-temperature structural intermetallics. Acta Mater. 48, 307–322.

    Article  CAS  Google Scholar 

  3. F. Chu, M. Lei, S. Maloy, J. Petrovic, and T. Mitchell (1996). Elastic properties of C40 transition metal disilicides. Acta Mater. 44, 3035–3048.

    Article  CAS  Google Scholar 

  4. H. Okamoto Desk Handbook: Phase Diagrams for Binary Alloys, 2nd ed (ASM International, USA, 2010).

    Google Scholar 

  5. A. Vasudevan and J. Petrovic (1992). A comparative overview of molybdenum disilicide composites. Mater. Sci. Eng. A 155, 1–17.

    Article  Google Scholar 

  6. Z. Yao, J. Stiglich, and T. Sudarshan (1999). Molybdenum silicide based materials and their properties. J. Mater. Eng. Perform. 8, 291–304.

    Article  CAS  Google Scholar 

  7. E. Courtright (1999). A comparison of MoSi2 matrix composites with other silicon-base composite systems. Mater. Sci. Eng. A 261, 53–63.

    Article  Google Scholar 

  8. D. Mason and D. Van Aken (1995). On the creep of directionally solidified MoSi2–Mo5Si3 eutectics. Acta Metall. Mater. 43, 1201–1210.

    Article  CAS  Google Scholar 

  9. D. Mason and D. Van Aken (1993). The effect of microstructural scale on hardness of MoSi2–Mo5Si3 eutectics. Scripta Metall. Mater. 28, 185–189.

    Article  CAS  Google Scholar 

  10. H. Zhang, S. Tang, J. Yan, and C. Zhang (2008). Fabrication and wear characteristics of MoSi2 matrix composites reinforced by La2O3 and Mo5Si3. Int. J. Refract. Met. H. 26, 115–119.

    Article  CAS  Google Scholar 

  11. P. Peralta, R. Dickerson, J. Michael, K. McClellan, F. Chu, and T. Mitchell (1999). Residual thermal stresses in MoSi2–Mo5Si3 in situ composites. Mater. Sci. Eng. A 261, 261–269.

    Article  Google Scholar 

  12. J. Schneibel and J. Sekhar (2003). Microstructure and properties of MoSi2–MoB and MoSi2–Mo5Si3 molybdenum silicides. Mater. Sci. Eng. A 340, 204–211.

    Article  Google Scholar 

  13. R. Gibala, A. Ghosh, D. Van Aken, D. Srolovitz, A. Basu, H. Chang, D. Mason, and W. Yang (1992). Mechanical behavior and interface design of MoSi2-based alloys and composites. Mater. Sci. Eng. A 155, 147–158.

    Article  Google Scholar 

  14. Y. Jeng and E. Lavernia (1994). Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557–2571.

    Article  Google Scholar 

  15. S. Deevi (1992). Diffusional reaction in the combustion synthesis of MoSi2. Mater. Sci. Eng. A 149, 241–251.

    Article  Google Scholar 

  16. C. Yeh and W. Chen (2007). Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites. J. Alloy. Compd. 438, 165–170.

    Article  CAS  Google Scholar 

  17. J. Subrahmanyam (1994). Combustion synthesis of MoSi2–Mo5Si3 composites. J. Mater. Res. 9, 2620–2626.

    Article  CAS  Google Scholar 

  18. J. Yan, H. Xu, H. Zhang, and S. Tang (2009). MoSi2 oxidation resistance coatings for Mo5Si3/MoSi2 composites. Rare Met. 28, 418–422.

    Article  CAS  Google Scholar 

  19. T. Schubert, A. Bohm, B. Kieback, M. Achtermann, and R. Scholl (2002). Effects of high energy milling on densification behaviour of Mo–Si powder mixture during pressureless sintering. Intermetallics 10, 873–878.

    Article  CAS  Google Scholar 

  20. A. G. Heron and G. B. Schaffer (2003). Mechanical alloying of MoSi2 with ternary alloying elements. Part1: experimental. Mater. Sci. Eng. A 325, 105–111.

    Google Scholar 

  21. M. Zakeri, R. Yazdani, M. H. Enayati, and M. R. Rahimpour (2005). Synthesis of nanocrystalline MoSi2 by mechanical alloying. J. Alloy. Compd. 403, 258–261.

    Article  CAS  Google Scholar 

  22. H. Zhang and X. Liu (2001). Analysis of milling energy in synthesis and formation mechanism of molybdenum disilicide by mechanical alloying. Int. J. Refract. Met. H. 19, 203–208.

    Article  CAS  Google Scholar 

  23. L. Liu and K. Cui (2003). Mechanical alloying of refractory metal–silicon systems. J. Mater. Process. Tech. 138, 394–398.

    Article  CAS  Google Scholar 

  24. M. Sannia, R. Orru, J. E. Garay, G. Cao, and Z. A. Munir (2003). Effect of phase transformation during high energy milling of field activated synthesis of dense MoSi2. J. Mater. Sci. Eng. A 345, 270–277.

    Article  Google Scholar 

  25. H. Saage and M. Kruger (2009). Ductilization of Mo–Si solid solutions manufactured by powder metallurgy. Acta Mater. 57, 3895–3901.

    Article  CAS  Google Scholar 

  26. L. Liu, F. Padella, W. Guo, and M. Maginit (1995). Solid state alloying reactions include by mechanical in metal–silicon systems. Acta Metall. Mater. 43, 3755–3761.

    Article  CAS  Google Scholar 

  27. P. Feng, A. Farid, Xi Wang, I. S. Humail, and X. Qu (2008). Mechanically activated reactive synthesis of refractory molybdenum and tungsten silicides. Int. J. Refract. Met. H. 26, 173–178.

    Article  CAS  Google Scholar 

  28. C. Suryanarayana (2001). Mechanical alloying and milling. Mater. Sci. 46, 1–184.

    CAS  Google Scholar 

  29. E. Gaffett and N. Malhouroux-Gaffet (1994). Nanocrystalline MoSi2 phase formation induced by mechanically activated annealing. J. Alloy. Compd. 205, 27–261.

    Article  Google Scholar 

  30. S. Zamani, H. R. Bakhsheshi-Rad, A. Shokuhfar, M. R. Vaezi, M. R. Abdul Kadir, and M. R. Mohammad Shafiee (2012). Synthesis and characterisation of MoSi2–Mo5Si3 nanocomposite by mechanical alloying and heat treatment. Int. J. Refract. Met. H. 31, 234–236.

    Article  Google Scholar 

  31. P. Kang and Z. Yin (2004). Formation mechanism and nanocrystalline phase transformation of molybdenum disilicide by mechanical alloying. Nanotechnology 15, 851–855.

    Article  CAS  Google Scholar 

  32. S. R. Bakhshi, M. Salehi, H. Edris, and G. H. Borhani (2008). Structural evaluation of Mo–Si–B multiphase alloy during mechanical alloying and heat treatment. Powder Metall. 51, 119–124.

    Article  CAS  Google Scholar 

  33. B. Cullity and S. Stock Elements of X-ray Diffraction (Addison-Wesley, USA, 1956).

    Google Scholar 

  34. P. Kang and Z. Yin (2003). Phase formation during annealing as-milled powders of molybdenum disilicide. Mater. Lett. 57, 4412–4417.

    Article  CAS  Google Scholar 

  35. D. L. Zhang (1995). Phase formation during mechanical alloying of Mo and Si powders. J. Mater. Sci. Lett. 14, 1508–1511.

    Article  CAS  Google Scholar 

  36. M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2008). Contorollable synthesis of nanocrystalline CdS with different morphologies. Chem. Eng. J. 145, 346–350.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the financial support of department of materials engineering of Malek Ashtar University of Technology (Shahin Shahr, Isfahan, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Erfanmanesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erfanmanesh, M., Bakhshi, S.R. Synthesis and Characterization of Nanocrystalline MoSi2 by Mechanical Alloying and Heat Treating. J Clust Sci 24, 133–143 (2013). https://doi.org/10.1007/s10876-012-0530-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0530-7

Keywords

Navigation