Skip to main content
Log in

Ab Initio Study of Neutral and Charged Copper Bromide (CuBr) n (+) Clusters (n = 1–6)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A theoretical study in the framework of the density functional theory is performed to investigate the stability, the structural and electronic properties of both neutral and cationic copper bromide clusters (CuBr) n (+), n = 1–6. The most stable isomers are found to be cyclic arrangements. Calculated infrared frequencies are compared with the available experimental spectra. The nature of the ionio-covalent bonding is characterized. The fragmentation, the ionization potentials are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Fayet, F. Granzer, G. Hegenbart, E. Moisar, B. Pischel, and L. Woste (1986). Z. Phys. D: At. Mol. Clusters 3, 299.

    Article  CAS  Google Scholar 

  2. C. Neipp, C. Pascual, and A. Belendez (2002). J. Phys. D: Appl. Phys. 35, 957.

    Article  CAS  Google Scholar 

  3. S. K. Kang, S. K. Yoon, and Y. Kim (2001). Org. Lett. 3, 2697.

    Article  CAS  Google Scholar 

  4. M. Binnewies, K. Rinke, and H. Shafer (1972). Z. Anorg. Chem. 395, 51.

    Google Scholar 

  5. M. Binnewies and H. Shäfer (1972). Z. Anorg. Chem. 395, 63.

    CAS  Google Scholar 

  6. D. L. Hilden and N. W. Gregory (1972). J. Phys. Chem. 76, 1632.

    Article  CAS  Google Scholar 

  7. T. P. Martin and H. Schaber (1980). J. Chem. Phys 73, 3541.

    Article  CAS  Google Scholar 

  8. T. P. Martin and A. Kakizaki (1984). J. Chem. Phys. 80, 3956.

    Article  CAS  Google Scholar 

  9. J. Berkowitz, C. H. Batson, and G. L. Goodman (1980). J. Chem. Phys. 72, 5829.

    Article  CAS  Google Scholar 

  10. M. Guido, G. Balducci, G. Gigli, and M. Spoliti (1971). J. Chem. Phys. 55, 4566.

    Article  CAS  Google Scholar 

  11. A. Kovacs and R. J. M. Konigs (2002). J. Mol. Struct. 643, 155.

    Article  CAS  Google Scholar 

  12. M. Hargittai, P. Schewerdtfeger, B. Réffy, and R. Brown (2003). Chem. Eur. J 9, 327.

    Article  CAS  Google Scholar 

  13. J. M. L’Hermite, F. Rabilloud, L. Marcou, and P. Labastie (2001). Eur. Phys. J. D 14, 323.

    Article  Google Scholar 

  14. J. M. L’Hermite, F. Rabilloud, P. Labastie, and F. Spiegelman (2001). Eur. Phys. J. D 16, 77.

    Article  Google Scholar 

  15. F. Rabilloud, F. Spiegelmann, and J. L. Heully (1999). J. Chem. Phys. 111, 8925.

    Article  CAS  Google Scholar 

  16. F. Rabilloud, F. Spiegelmann, J. M. L’Hermite, and P. Labastie (2001). J. Chem. Phys. 114, 289.

    Article  CAS  Google Scholar 

  17. F. Rabilloud, O. Bonhomme, J.-M. L’Hermite, and P. Labastie (2008). Chem. Phys. Lett. 454, 153.

    Article  CAS  Google Scholar 

  18. P. Schwerdtfeger, R. P. Krawczyk, A. Hammer, and R. Brown (2004). Inorg. Chem. 43, 6707.

    Article  CAS  Google Scholar 

  19. E. E. Karagiannis and C. A. Tsipis (2010). Organometallics 29, 847.

    Article  CAS  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D.02 (Gaussian, Inc., Wallingford, CT, 2004).

  21. A. R. Allouche (2011). J. Comp. Chem. 32, 174.

    Article  CAS  Google Scholar 

  22. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  24. M. Dolg, U. Wedig, H. Stoll, and H. Preuss (1987). J. Chem. Phys. 86, 866.

    Article  CAS  Google Scholar 

  25. A. Bergner, M. Dolg, W. Kuchle, H. Stoll, and H. Preuss (1993). Mol. Phys. 80, 1431.

    Article  CAS  Google Scholar 

  26. J. Sugar and A. Musgrove (1990). J. Phys. Chem. Ref. Data 19, 527.

    Article  CAS  Google Scholar 

  27. C. Blondel, P. Cacciani, C. Delsart, and R. Trainlam (1989). Phys. Rev. A 40, 3698.

    Article  CAS  Google Scholar 

  28. E. L. Manson, F. C. De Lucia, and Walter Gordy (1975). J. Chem. Phys. 63, 2724.

    Article  CAS  Google Scholar 

  29. K. P. Huber and G. Herzberg Molecular Spectra and Molecular Structure IV-Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

    Google Scholar 

  30. A. E. Reed and F. Weinhold (1983). J. Chem. Phys. 78, 4066.

    Article  CAS  Google Scholar 

  31. M. Guichemerre, G. Chambaud, and H. Stoll (2002). Chem. Phys. 280, 71.

    Article  CAS  Google Scholar 

  32. F. Rabilloud (2010). J. Phys. Chem. A 114, 7241.

    Article  CAS  Google Scholar 

  33. Y. L. Wang, X. B. Wang, X. P. Xing, F. Wei, J. Li, and L. S. Wang (2010). J. Phys. Chem. A 114, 11244.

    Article  CAS  Google Scholar 

  34. H. T. Liu, X. G. Xiong, P. D. Dau, Y. L. Wang, J. Li, and L. S. Wang (2011). Chem. Sci. 2, 2101.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Pôle Scientifique de Modélisation Numérique (PSMN) at Lyon, France, for generous allocation of computation time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rabilloud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabilloud, F., Mathian, D. Ab Initio Study of Neutral and Charged Copper Bromide (CuBr) n (+) Clusters (n = 1–6). J Clust Sci 23, 165–176 (2012). https://doi.org/10.1007/s10876-012-0444-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0444-4

Keywords

Navigation