Skip to main content

Advertisement

Log in

Antibacterial Activity of Light-Activated Silicone Containing Methylene Blue and Gold Nanoparticles of Different Sizes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Methylene Blue and methylene blue-gold nanoparticle mixtures were encapsulated in a silicone polymer using a swell-encapsulation-shrink technique. The antibacterial properties of the materials, when tested against Escherichia coli and Staphylococcus epidermidis, and exposed to laser light (660 nm), were significantly affected by both the presence and size of Au nanoparticles. Bacterial inactivation data were analysed using the Weibull inactivation model. For both E. coli and S. epidermidis the value of the parameter, indicating the time required to achieve the first log10 reduction in the viable count, decreased when Au nanoparticles of ca 2 nm diameter were present. Larger Au nanoparticles (diameters of 5 and 20 nm) in combination with methylene blue were also embedded in silicone. The values of these materials increased with nanoparticle diameter, indicating a reduction in antibacterial activity. In all cases E. coli had higher values than S. epidermidis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Decraene, J. Pratten, and M. Wilson (2006). Appl. Environ. Microbiol. 72, 4436.

    Article  CAS  Google Scholar 

  2. K. Page, M. Wilson, and I. P. Parkin (2009). J. Mater. Chem. 19, 3819.

    Article  CAS  Google Scholar 

  3. S. Noimark, C. Dunnill, M. Wilson, and I. P. Parkin (2009). Chem. Soc. Rev. 38, 3435.

    Article  CAS  Google Scholar 

  4. S. Perni, C. Piccirillo, J. Pratten, P. Prokopovich, W. Chrzanowski, I. P. Parkin, and M. Wilson (2009). Biomaterials 30, 89.

    Article  CAS  Google Scholar 

  5. S. Perni, P. Prokopovich, C. Piccirillo, J. Pratten, I. P. Parkin, and M. Wilson (2009). J. Mater. Chem. 19, 2715.

    Article  CAS  Google Scholar 

  6. J. Gil-Tomás, S. Tubby, I. P. Parkin, N. Narband, L. Dekker, S. P. Nair, M. Wilson, and C. Street (2007). J. Mater. Chem. 17, 3739.

    Article  Google Scholar 

  7. G. Cebrián, N. Sagarzazu, R. Pagán, S. Condón, and P. Mañas (2008). J. Appl. Microbiol. 105, 271.

    Article  Google Scholar 

  8. S. Perni, X. T. Deng, G. Shama, and M. G. Kong (2006). IEEE Trans. Plasma Sci. 34, 1297.

    Article  Google Scholar 

  9. B. Ostle, K. V. Turner, C. R. Hicks, and G. W. McElrath, in A. Kugushev (ed.), Engineering Statistics: The Industrial Experience (Duxbury Press, Belmont, 1996), p. 382.

  10. G. M. F. Aragao, M. G. Corradini, M. D. Normand, and M. Peleg (2007). Int. J. Food Microbiol. 119, 243.

    Article  CAS  Google Scholar 

  11. S. Perni, D. W. Liu, G. Shama, and M. G. Kong (2008). J. Food Prot. 71, 302.

    CAS  Google Scholar 

  12. S. Perni, G. Shama, and M. G. Kong (2008). J. Food Prot. 71, 1619.

    Google Scholar 

  13. K. Aronsson, U. Ronner, and E. Borch (2005). Int. J. Food Microbiol. 99, 19.

    Article  CAS  Google Scholar 

  14. H. Tsunoyama, H. Sakurai, Y. Negishi, and T. Tsukuda (2005). J. Am. Chem. Soc. 127, 9374.

    Article  CAS  Google Scholar 

  15. S. H. Overbury, V. Schwartz, D. R. Mullins, W. Yan, and S. Dai (2006). J. Catal. 241, 56.

    Article  CAS  Google Scholar 

  16. J. Llorca, A. Casanovas, M. Dominguez, I. Casanova, I. Angurell, M. Seco, and O. Rossell (2008). J. Nanopart. Res. 10, 537.

    Article  CAS  Google Scholar 

  17. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Gente, and M. J. Delmon (1993). J. Catal. 144, 175.

    Article  CAS  Google Scholar 

  18. M. Mavrikakis, P. Stoltze, and J. K. Norskov (2000). Catal. Lett. 64, 101.

    Article  CAS  Google Scholar 

  19. M. Zeisser-Labouebe, N. Lange, R. Gurny, and F. Delie (2006). Int. J. Pharm. 326, 174.

    Article  CAS  Google Scholar 

  20. J. Y. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Shappard, and M. Olivo (2008). Laser Surg. Med. 40, 584.

    Article  Google Scholar 

  21. D. K. Chatterjee, L. S. Fong, and Y. Zhang (2008). Adv. Drug Deliv. Rev. 60, 1627.

    Article  CAS  Google Scholar 

  22. Y. Cheng, A. C. Samia, M. D. Meyers, I. Panagopoulos, B. Fei, and C. Burda (2008). J. Am. Chem. Soc. 130, 10643.

    Article  CAS  Google Scholar 

  23. J. P. Cotter, J. C. Fitzmaurice, and I. P. Parkin (1994). J. Mater. Chem. 4, 1604.

    Article  Google Scholar 

  24. T. Rowley and I. P. Parkin (1993). J. Mater. Chem. 3, 689.

    Article  CAS  Google Scholar 

  25. M. V. Kuznetsov, Q. A. Pankhurst, and I. P. Parkin (1998). J. Phys. D. Appl. Phys. 31, 2886.

    Article  CAS  Google Scholar 

  26. J. C. Fitzmaurice, A. Hector, A. T. Rolwey, and I. P. Parkin (1994). Polyhedron 13, 235.

    Article  CAS  Google Scholar 

  27. R. G. Palgrave and I. P. Parkin (2006). J. Am. Chem. Soc. 128, 1587.

    Article  CAS  Google Scholar 

  28. R. G. Palgrave and I. P. Parkin (2007). Chem. Mater. 19, 4639.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan P. Parkin.

Additional information

This paper is dedicated to friend and mentor Professor Malcolm Chisholm FRS on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perni, S., Piccirillo, C., Kafizas, A. et al. Antibacterial Activity of Light-Activated Silicone Containing Methylene Blue and Gold Nanoparticles of Different Sizes. J Clust Sci 21, 427–438 (2010). https://doi.org/10.1007/s10876-010-0319-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-010-0319-5

Keywords

Navigation