Skip to main content
Log in

Metal Nanoparticles on Stainless Steel Surfaces as Novel Heterogeneous Catalysts

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The goal of this work was the development of a novel type of heterogeneous catalyst, consisting of bare metal nanoparticles on stainless steel foils, which can be shaped to any kind of architecture and, if necessary, heated electrically. Solutions of pre-prepared, ligand protected and monodispersed gold, palladium, platinum and rhodium nanoparticles were sprayed onto stainless steel foils, followed by the careful removal of the ligand molecules by an oxygen plasma treatment. Due to this, bare particles become irreversibly fixed on the steel support. It could be shown that the original particle sizes do not change during the plasma treatment. Foils, densely coated with the nanoparticles, were used for gas phase catalyses in a self-made reactor at room temperature or at 60 °C. Hydrogenation of 1,3-butadiene at 15 nm Pd and 2 nm Pt, CO oxidation at 16 nm, 8 nm and 1.4 nm gold and NO reduction with NH3 at 2 nm Rh particles were performed, indicating that the novel catalysts might in principle be applicable in technical processes if the experimental conditions like form and temperature would be optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Schmid G., Emde S., Maihack V., Meyer-Zaika W., Peschel S. (1996) J. Mol. Catal. A 107:95

    Article  CAS  Google Scholar 

  2. Schmid G., West H., Malm J. -O., Bovin J. -O., Grenthe C. (1996) Chemistry. Europ. J. 2:1099

    CAS  Google Scholar 

  3. Schmid G., West H., Mehles H., Lehnert A. (1997) Inorg. Chem. 36:891

    Article  CAS  Google Scholar 

  4. Schulz F., Franzka S., Schmid G. (2002) Adv. Funct. Mater. 12:532

    Article  CAS  Google Scholar 

  5. Gañàn-Calvo A. M., Barrero A. (1999) J. Aerosol. Sci. 30(1):117

    Article  Google Scholar 

  6. F. Schulz (2002). PhD Thesis University of Essen

  7. W. Tauscher (1981). Aerosol Technologie, Verlag für Chemische Industrie, 156

  8. Turkevitch J., Stevenson P. C. Hillier J. (1951) Farad. Soc. 11:55

    Article  Google Scholar 

  9. Schmid G., Lehnert A. (1989) Angew. Chem. Int. Ed. Engl. 28:780

    Article  Google Scholar 

  10. Boudart M. (1995) Chem Rev. 95:661

    Article  CAS  Google Scholar 

  11. Rooney J. J. (1985) J. Mol. Catal. 31:147

    Article  CAS  Google Scholar 

  12. Cogen J. M., Maier W. F. (1987) Langmuir 3:830

    Article  CAS  Google Scholar 

  13. Meyer E. F., Burwell R. L. (1963) J. Amer. Chem. Soc. 85:2881

    Article  CAS  Google Scholar 

  14. Choice B. J., Rooney J. J., Wells P. B., Wilson G. R. (1966) Discuss. Faraday. Soc. 41:223

    Article  Google Scholar 

  15. Nudel J. N., Umansky B. S., Piacentini R. O., Lombardo E. A. (1984) J. Catal. 89:362

    Article  CAS  Google Scholar 

  16. Pradier C. M., Berthier Y. (1991) J. Catal. 129:356

    Article  CAS  Google Scholar 

  17. Jackson S. D. (1996) J. Catal. 162:10

    Article  CAS  Google Scholar 

  18. Krauth A. C., Bernstein G. H. Wolf E. E. (1997) Catal. Lett. 45:177

    Article  CAS  Google Scholar 

  19. Meier W. F. (1989) Angew. Chem. Intern. Engl. 28:135

    Article  Google Scholar 

  20. Kormann H. -P., Schmid G., Pelzer K., Philippot K., Chaudret B. (2004) Z. Anorg. Allg. Chem. 630:1913

    Article  CAS  Google Scholar 

  21. Engel T., Ertl G. (1975) Adv. Catal. 28:1

    Google Scholar 

  22. Cant N. W., Hicks P. C., Lennon B. S. (1978) J. Catal. 54:372

    Article  CAS  Google Scholar 

  23. Peden C. H. F., Goodman D. W. (1986) J. Phys. Chem. 90:1360

    Article  CAS  Google Scholar 

  24. Oh S. H., Fisher G. B., Carpenter J. E., Goodman D. W. (1986) J. Catal. 100:360

    Article  CAS  Google Scholar 

  25. Ertl G., Knötzinger H., Weitkamp J. (1999). Environmental Catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  26. Taylor K. C. (1984) Catalytic Science Technology. Springer, Berlin

    Google Scholar 

  27. Hutchings G. J., Mirazae A. A., Siddiaui M. R. H., Taylor S. H. Joyner R. W. (1998) Appl. Catal. 166:143

    Article  CAS  Google Scholar 

  28. Haruta M., Kobayashi T., Tsubota S., Ueda S. (1993) Stud. Surf. Sci. Catal. 75:2657

    Article  CAS  Google Scholar 

  29. Haruta M., Yamada N., Kobayashi T., Ijima S. (1989) J. Catal. 115:301

    Article  CAS  Google Scholar 

  30. Haruta M., Tsubota S., Kobayashi T., Kageyama H., Genet M. J., Delmon B. (1993) J. Catal. 144:175

    Article  CAS  Google Scholar 

  31. Gardner S. D., Hoflund G. B., Upchurch B. T., Schreyer D. R., Kielin E. J. (1991) J. Catal. 129:114

    Article  CAS  Google Scholar 

  32. Haruta M. (1997) Catal. Today 36:153

    Article  CAS  Google Scholar 

  33. Tsubota S., Chiorino A., Haruta M., Boccuzzi F. (1996) J. Phys. Chem. 100:3625

    Article  Google Scholar 

  34. Bollinger M. A., Vannice M. A. (1996) Appl. Catal. 8:417

    CAS  Google Scholar 

  35. Knell A., Barnickel P., Baiker A., Wokaun A. (1992) J. Catal. 137:306

    Article  CAS  Google Scholar 

  36. Schmid G. (1990) Inorg. Syntheses 7:214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Schmid.

Additional information

Dedicated to Professor Dieter Fenske on the occassion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyrwa, D.W., Schmid, G. Metal Nanoparticles on Stainless Steel Surfaces as Novel Heterogeneous Catalysts. J Clust Sci 18, 476–493 (2007). https://doi.org/10.1007/s10876-007-0123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-007-0123-z

Keywords

Navigation