Skip to main content

Advertisement

Log in

Novel CD81 Mutations in a Chinese Patient Led to IgA Nephropathy and Impaired BCR Signaling

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

CD81 deficiency is an extremely rare primary immunodeficiency disease characterized by severe and recurrent infections, IgA-related nephropathy, and profound hypogammaglobulinemia. Only one patient has been reported so far, and the pathogenesis remains unclear. Here, we identified a new case of CD81 deficiency and described its pathogenesis.

Methods

We analyzed the clinical, genetic, and immunological features of the patient with CD81 deficiency, and explored the pathogenesis of her antibody deficiencies.

Results

The major manifestation of this patient was unexpectedly not recurrent infections but IgA nephropathy with aberrant serum galactose-deficient IgA1. Whole-exome sequencing revealed novel biallelic mutations in CD81 gene that abolished the surface expression of CD81. B cells from the patient lack membrane CD19 and showed reduced switched memory B cells and transitional B cells. Decreased expression of key molecules pY and pBTK in BCR signaling were demonstrated by confocal microscopy. RNA sequencing revealed that genes associated with BCR signaling and immunoglobulins were downregulated in CD81-deficient B cells. In addition, the patient showed increased frequency of T follicular helper cells that biased to Th1-like subsets.

Conclusion

We reported the second patient with CD81 deficiency in the world and illustrated aberrant BCR signaling in the patient, therefore helping to unravel the mechanism of antibody deficiency in CD81-deficient patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Oren R, Takahashi S, Doss C, Levy R, Levy S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 1990;10(8):4007–15. https://doi.org/10.1128/mcb.10.8.4007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fearon DT, Carter RH. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol. 1995;13:127–49. https://doi.org/10.1146/annurev.iy.13.040195.001015.

    Article  CAS  PubMed  Google Scholar 

  3. Carter RH, Fearon DT. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science. 1992;256(5053):105–7. https://doi.org/10.1126/science.1373518.

    Article  CAS  PubMed  Google Scholar 

  4. Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF, et al. The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment. J Immunol. 2003;171(8):4062–72. https://doi.org/10.4049/jimmunol.171.8.4062.

    Article  CAS  PubMed  Google Scholar 

  5. Vences-Catalan F, Kuo CC, Sagi Y, Chen H, Kela-Madar N, van Zelm MC, et al. A mutation in the human tetraspanin CD81 gene is expressed as a truncated protein but does not enable CD19 maturation and cell surface expression. J Clin Immunol. 2015;35(3):254–63. https://doi.org/10.1007/s10875-015-0148-2.

    Article  CAS  PubMed  Google Scholar 

  6. Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, et al. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity. 2013;38(3):461–74. https://doi.org/10.1016/j.immuni.2012.11.019.

    Article  CAS  PubMed  Google Scholar 

  7. Susa KJ, Seegar TC, Blacklow SC, Kruse AC. A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking. Elife. 2020;9. https://doi.org/10.7554/eLife.52337

  8. Susa KJ, Rawson S, Kruse AC, Blacklow SC. Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81. Science. 2021;371(6526):300–5. https://doi.org/10.1126/science.abd9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74. https://doi.org/10.1172/JCI39748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Yang Q, Chen X, Tang W, Zhou L, Chen Z, et al. Phenotypic characterization of patients with activated PI3Kdelta syndrome 1 presenting with features of systemic lupus erythematosus. Genes Dis. 2021;8(6):907–17. https://doi.org/10.1016/j.gendis.2020.04.012.

    Article  CAS  PubMed  Google Scholar 

  11. Ding Y, Zhou L, Xia Y, Wang W, Wang Y, Li L, et al. Reference values for peripheral blood lymphocyte subsets of healthy children in China. J Allergy Clin Immunol. 2018;142(3):970-3e8. https://doi.org/10.1016/j.jaci.2018.04.022.

    Article  PubMed  Google Scholar 

  12. Jahnmatz M, Kesa G, Netterlid E, Buisman AM, Thorstensson R, Ahlborg N. Optimization of a human IgG B-cell ELISpot assay for the analysis of vaccine-induced B-cell responses. J Immunol Methods. 2013;391(1–2):50–9. https://doi.org/10.1016/j.jim.2013.02.009.

    Article  CAS  PubMed  Google Scholar 

  13. Pinna D, Corti D, Jarrossay D, Sallusto F, Lanzavecchia A. Clonal dissection of the human memory B-cell repertoire following infection and vaccination. Eur J Immunol. 2009;39(5):1260–70. https://doi.org/10.1002/eji.200839129.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma S, Orlowski G, Song W. Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. J Immunol. 2009;182(1):329–39. https://doi.org/10.4049/jimmunol.182.1.329.

    Article  CAS  PubMed  Google Scholar 

  15. Seifert M, Kuppers R. Human memory B cells. Leukemia. 2016;30(12):2283–92. https://doi.org/10.1038/leu.2016.226.

    Article  CAS  PubMed  Google Scholar 

  16. Bai X, Zhang Y, Huang L, Wang J, Li W, Niu L, et al. The early activation of memory B cells from Wiskott-Aldrich syndrome patients is suppressed by CD19 downregulation. Blood. 2016;128(13):1723–34. https://doi.org/10.1182/blood-2016-03-703579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Zelm MC, Reisli I, van der Burg M, Castano D, van Noesel CJ, van Tol MJ, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12. https://doi.org/10.1056/NEJMoa051568.

    Article  PubMed  Google Scholar 

  18. Kanegane H, Agematsu K, Futatani T, Sira MM, Suga K, Sekiguchi T, et al. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun. 2007;8(8):663–70. https://doi.org/10.1038/sj.gene.6364431.

    Article  CAS  PubMed  Google Scholar 

  19. Skendros P, Rondeau S, Chateil JF, Bui S, Bocly V, Moreau JF, et al. Misdiagnosed CD19 deficiency leads to severe lung disease. Pediatr Allergy Immunol. 2014;25(6):603–6. https://doi.org/10.1111/pai.12222.

    Article  PubMed  Google Scholar 

  20. van Zelm MC, Smet J, van der Burg M, Ferster A, Le PQ, Schandene L, et al. Antibody deficiency due to a missense mutation in CD19 demonstrates the importance of the conserved tryptophan 41 in immunoglobulin superfamily domain formation. Hum Mol Genet. 2011;20(9):1854–63. https://doi.org/10.1093/hmg/ddr068.

    Article  CAS  PubMed  Google Scholar 

  21. Wentink MWJ, van Zelm MC, van Dongen JJM, Warnatz K, van der Burg M. Deficiencies in the CD19 complex. Clin Immunol. 2018;195:82–7. https://doi.org/10.1016/j.clim.2018.07.017.

    Article  CAS  PubMed  Google Scholar 

  22. Vince N, Boutboul D, Mouillot G, Just N, Peralta M, Casanova JL, et al. Defects in the CD19 complex predispose to glomerulonephritis, as well as IgG1 subclass deficiency. J Allergy Clin Immunol. 2011;127(2):538-41e1-5. https://doi.org/10.1016/j.jaci.2010.10.019.

    Article  CAS  PubMed  Google Scholar 

  23. Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, et al. IgA nephropathy Nat Rev Dis Primers. 2016;2:16001. https://doi.org/10.1038/nrdp.2016.1.

    Article  PubMed  Google Scholar 

  24. Shimizu M, Kanegane H, Wada T, Motoyoshi Y, Morio T, Candotti F, et al. Aberrant glycosylation of IgA in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. J Allergy Clin Immunol. 2013;131(2):587-90e1-3. https://doi.org/10.1016/j.jaci.2012.08.040.

    Article  CAS  PubMed  Google Scholar 

  25. Cappione AJ, Pugh-Bernard AE, Anolik JH, Sanz I. Lupus IgG VH4.34 antibodies bind to a 220-kDa glycoform of CD45/B220 on the surface of human B lymphocytes. J Immunol. 2004;172(7):4298–307. https://doi.org/10.4049/jimmunol.172.7.4298.

    Article  CAS  PubMed  Google Scholar 

  26. Lau A, Avery DT, Jackson K, Lenthall H, Volpi S, Brigden H, et al. Activated PI3Kdelta breaches multiple B cell tolerance checkpoints and causes autoantibody production. J Exp Med. 2020;217(2). https://doi.org/10.1084/jem.20191336

  27. Avnir Y, Prachanronarong KL, Zhang Z, Hou S, Peterson EC, Sui J, et al. Structural Determination of the Broadly Reactive Anti-IGHV1-69 Anti-idiotypic Antibody G6 and Its Idiotope. Cell Rep. 2017;21(11):3243–55. https://doi.org/10.1016/j.celrep.2017.11.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hwang KK, Trama AM, Kozink DM, Chen X, Wiehe K, Cooper AJ, et al. IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria. PLoS One. 2014;9(3):e90725. https://doi.org/10.1371/journal.pone.0090725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Zelm MC, Bartol SJ, Driessen GJ, Mascart F, Reisli I, Franco JL, et al. Human CD19 and CD40L deficiencies impair antibody selection and differentially affect somatic hypermutation. J Allergy Clin Immunol. 2014;134(1):135–44. https://doi.org/10.1016/j.jaci.2013.11.015.

    Article  CAS  PubMed  Google Scholar 

  30. Todd SC, Lipps SG, Crisa L, Salomon DR, Tsoukas CD. CD81 expressed on human thymocytes mediates integrin activation and interleukin 2-dependent proliferation. J Exp Med. 1996;184(5):2055–60. https://doi.org/10.1084/jem.184.5.2055.

    Article  CAS  PubMed  Google Scholar 

  31. Sagi Y, Landrigan A, Levy R, Levy S. Complementary costimulation of human T-cell subpopulations by cluster of differentiation 28 (CD28) and CD81. Proc Natl Acad Sci U S A. 2012;109(5):1613–8. https://doi.org/10.1073/pnas.1121307109.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015;136(4):993-1006 e1. https://doi.org/10.1016/j.jaci.2015.05.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen X, Xu Q, Li X, Wang L, Yang L, Chen Z, et al. Molecular and Phenotypic Characterization of Nine Patients with STAT1 GOF Mutations in China. J Clin Immunol. 2020;40(1):82–95. https://doi.org/10.1007/s10875-019-00688-3.

    Article  CAS  PubMed  Google Scholar 

  34. Alroqi FJ, Charbonnier LM, Baris S, Kiykim A, Chou J, Platt CD, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050-9 e10. https://doi.org/10.1016/j.jaci.2017.05.022.

    Article  CAS  PubMed  Google Scholar 

  35. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108–21. https://doi.org/10.1016/j.immuni.2010.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the support, cooperation, and trust of the patients, donors, and their families.

Funding

This work was supported by National Natural Science Foundation of China (grant number 82070135), Graduate Mentor Team of Chongqing Municipal Education Commission (grant number 2019–09-66), General Project of Chongqing Natural Science Foundation (grant number cstc2020jcyj-msxmX0607), and Future Medical Youth Innovation Team Development Support Program of CMU.

Author information

Authors and Affiliations

Authors

Contributions

Lu Yang and Ping Liu contributed equally to this study. Lu Yang performed experiments, analyzed data, and drafted the manuscript. Ping Liu collected clinical data, managed, and followed the patient. Xiaodong Zhao and Yunfei An designed this study and revised the manuscript. Ran Chen performed the B cell ELISPOTs. Hongqiang Du, Yanan Li, Lina Zhou, Yuan Ding, Xuemei Tang, and Yongwen Chen provided experimental expertise and scientific sights in designing the project. Xiangli Wang and Cuihua Liu helped manage and follow the patient. Bo Zhou helped analyze data of RNA sequencing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yunfei An or Xiaodong Zhao.

Ethics declarations

Ethics Approval

The study was performed following Declaration of Helsinki and approved by the Institutional Review Board of Children’s Hospital of Chongqing Medical University (2021–138).

Consent to Participate

Written informed consents for involvement in this study were provided by parents.

Consent for Publication

Written informed consent for publication of the study was obtained from the patient’s parents.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Liu, P., Du, H. et al. Novel CD81 Mutations in a Chinese Patient Led to IgA Nephropathy and Impaired BCR Signaling. J Clin Immunol 42, 1672–1684 (2022). https://doi.org/10.1007/s10875-022-01333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-022-01333-2

Keywords

Navigation