Skip to main content

Advertisement

Log in

Hematopoietic Cell Transplantation for Inborn Errors of Immunity Other than Severe Combined Immunodeficiency in Japan: Retrospective Analysis for 1985–2016

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Hematopoietic cell transplantation (HCT) is a curative therapy for most patients with inborn errors of immunity (IEI). We conducted a nationwide study on HCT for patients with IEI other than severe combined immunodeficiency (non-SCID) in Japan.

Methods

Data from the Japanese national database (Transplant Registry Unified Management Program, TRUMP) for 566 patients with non-SCID IEI, who underwent their first HCT between 1985 and 2016, were retrospectively analyzed.

Results

The 10-year overall survival (OS) and event-free survival (EFS) were 74% and 64%, respectively. The 10-year OS for HCT from unrelated bone marrow (URBM), accounting for 39% of HCTs, was comparable to that for HCT from matched sibling donor (MSD), 79% and 81%, respectively. HCT from unrelated cord blood (URCB), accounting for 28% of HCTs, was also common, with a 10-year OS of 69% but less robust engraftment. The intensity of conditioning was not associated with OS or neutrophil recovery; however, myeloablative conditioning was more frequently associated with infection-related death. Patients who received myeloablative irradiation showed poor OS. Multivariate analyses revealed that HCT in 1985–1995 (hazard ratio [HR], 2.0; P = 0.03), URCB (HR, 2.0; P = 0.01), and related donor other than MSD (ORD) (HR, 2.9; P < 0.001) were associated with poor OS, and URCB (HR, 3.6; P < 0.001) and ORD (HR, 2.7; P = 0.02) showed a higher incidence of retransplantation.

Conclusions

We present the 1985–2016 status of HCT for non-SCID IEI in Japan with sufficient statistical power, highlighting the potential of URBM as an alternative donor and the feasibility of reduced intensity conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets presented in this article are not readily available because they belong to the JSTCT and the Japanese Data Center for Hematopoietic Cell Transplantation (JDCHCT). Requests to access the datasets should be directed to http://www.jdchct.or.jp/.

Code Availability

All statistical analyses were performed using the Stata software v16.1 and EZR 1.42.

Abbreviations

aGVHD:

Acute graft-versus-host disease

BM:

Bone marrow

CGD:

Chronic granulomatous disease

cGVHD:

Chronic graft-versus-host disease

CI:

Confidence interval

CID:

Combined immunodeficiency

EFS:

Event-free survival

FHL:

Familial hemophagocytic lymphohistiocytosis

GVHD:

Graft-versus-host disease

HCT:

Hematopoietic cell transplantation

HLH:

Hemophagocytic lymphohistiocytosis

HR:

Hazard ratio

IEI:

Inborn errors of immunity

IUIS:

International Union of Immunological Societies

JSTCT:

Japanese Society for Transplantation and Cellular Therapy

MAC:

Myeloablative conditioning

MSD:

Matched sibling donor

ORD:

Other related donor

OS:

Overall survival

PB:

Peripheral blood

PGF:

Primary graft failure

PIRD:

Primary immune regulatory disorder

RIC:

Reduced intensity conditioning

SCID:

Severe combined immunodeficiency

SCN:

Severe congenital neutropenia

SGF:

Secondary graft failure

TBI:

Total body irradiation

TRUMP:

Transplant Registry Unified Management Program

URBM:

Unrelated bone marrow

URCB:

Unrelated cord blood

URCBT:

Unrelated cord blood transplantation

WAS:

Wiskott–Aldrich syndrome

References

  1. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40:24–64. https://doi.org/10.1007/s10875-019-00737-x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang Q, Frange P, Blanche S, Casanova JL. Pathogenesis of infections in HIV-infected individuals: insights from primary immunodeficiencies. Curr Opin Immunol. 2017;48:122–33. https://doi.org/10.1016/j.coi.2017.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968;2:1366–9. https://doi.org/10.1016/s0140-6736(68)92673-1.

    Article  CAS  PubMed  Google Scholar 

  4. Hematopoietic Cell Transplantation in Japan. Annual Report of Nationwide Survey 2019. The Japanese Data Center for Hematopoietic Cell Transplantation/The Japan Society for Hematopoietic Cell Transplantation. Available at: http://www.jdchct.or.jp/data/report/2019/2-10-2.pdf. Accessed 23 Dec 2020.

  5. Morio T, Atsuta Y, Tomizawa D, Nagamura-Inoue T, Kato K, Ariga T, et al. Outcome of unrelated umbilical cord blood transplantation in 88 patients with primary immunodeficiency in Japan. Br J Haematol. 2011;154:363–72. https://doi.org/10.1111/j.1365-2141.2011.08735.x.

    Article  PubMed  Google Scholar 

  6. Atsuta Y, Suzuki R, Yoshimi A, Gondo H, Tanaka J, Hiraoka A, et al. Unification of hematopoietic stem cell transplantation registries in Japan and establishment of the TRUMP System. Int J Hematol. 2007;86:269–74. https://doi.org/10.1532/IJH97.06239.

    Article  PubMed  Google Scholar 

  7. Bousfiha A, Jeddane L, Picard C, Ailal F, Gaspar HB, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38:129–43. https://doi.org/10.1007/s10875-017-0465-8.

    Article  PubMed  Google Scholar 

  8. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15:1628–33. https://doi.org/10.1016/j.bbmt.2009.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pai S-Y, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371:434–46. https://doi.org/10.1056/NEJMoa1401177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haddad E, Logan BR, Griffith LM, Buckley RH, Parrott RE, Prockop SE, et al. SCID genotype and 6-month posttransplant CD4 count predict survival and immune recovery. Blood. 2018;132:1737–49. https://doi.org/10.1182/blood-2018-03-840702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

    Article  CAS  PubMed  Google Scholar 

  12. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126:602–10. https://doi.org/10.1016/j.jaci.2010.06.015.

    Article  PubMed  Google Scholar 

  13. Mitchell R, Nivison-Smith I, Anazodo A, Tiedemann K, Shaw P, Teague L, et al. Outcomes of hematopoietic stem cell transplantation in primary immunodeficiency: a report from the Australian and New Zealand Children’s Haematology Oncology Group and the Australasian Bone Marrow Transplant Recipient Registry. Biol Blood Marrow Transplant. 2013;19:338–43. https://doi.org/10.1016/j.bbmt.2012.11.619.

    Article  PubMed  Google Scholar 

  14. Fernandes JF, Nichele S, Daudt LE, Tavares RB, Seber A, Kerbauy FR, et al. Transplantation of hematopoietic stem cells for primary immunodeficiencies in Brazil: challenges in treating rare diseases in developing countries. J Clin Immunol. 2018;38:917–26. https://doi.org/10.1007/s10875-018-0564-1.

    Article  PubMed  Google Scholar 

  15. Olaya M, Franco A, Chaparro M, Estupiñan M, Aristizabal D, Builes-Restrepo N, et al. Hematopoietic stem cell transplantation in children with inborn errors of immunity: a multi-center experience in Colombia. J Clin Immunol. 2020;40:1116–23. https://doi.org/10.1007/s10875-020-00856-w.

    Article  PubMed  Google Scholar 

  16. Miyamoto S, Umeda K, Kurata M, Nishimura A, Yanagimachi M, Ishimura M, et al. Hematopoietic cell transplantation for severe combined immunodeficiency patients: A Japanese retrospective study. J Clin Immunol. 2021. https://doi.org/10.1007/s10875-021-01112-5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eapen M, Rocha V, Sanz G, Scaradavou A, Zhang M-J, Arcese W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11:653–60. https://doi.org/10.1016/S1470-2045(10)70127-3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang M-J, Champlin RE, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351:2265–75. https://doi.org/10.1056/NEJMoa041276.

    Article  CAS  PubMed  Google Scholar 

  19. Peffault de Latour R, Purtill D, Ruggeri A, Sanz G, Michel G, Gandemer V, et al. Influence of nucleated cell dose on overall survival of unrelated cord blood transplantation for patients with severe acquired aplastic anemia: a study by eurocord and the aplastic anemia working party of the European group for blood and marrow transplantation. Biol Blood Marrow Transplant. 2011;17:78–85. https://doi.org/10.1016/j.bbmt.2010.06.011.

    Article  PubMed  Google Scholar 

  20. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351:2276–85. https://doi.org/10.1056/NEJMoa041469.

    Article  CAS  PubMed  Google Scholar 

  21. Ruggeri A, Eapen M, Scaravadou A, Cairo MS, Bhatia M, Kurtzberg J, et al. Umbilical cord blood transplantation for children with thalassemia and sickle cell disease. Biol Blood Marrow Transplant. 2011;17:1375–82. https://doi.org/10.1016/j.bbmt.2011.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kurzay M, Hauck F, Schmid I, Wiebking V, Eichinger A, Jung E, et al. T-cell replete haploidentical bone marrow transplantation and post-transplant cyclophosphamide for patients with inborn errors. Haematologica. 2019;104:e478–82. https://doi.org/10.3324/haematol.2018.215285.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Neven B, Diana J-S, Castelle M, Magnani A, Rosain J, Touzot F, et al. Haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide for primary immunodeficiencies and inherited disorders in children. Biol Blood Marrow Transplant. 2019;25:1363–73. https://doi.org/10.1016/j.bbmt.2019.03.009.

    Article  PubMed  Google Scholar 

  24. Uppuluri R, Sivasankaran M, Patel S, Swaminathan VV, Ramanan KM, Ravichandran N, et al. Haploidentical stem cell transplantation with post-transplant cyclophosphamide for primary immune deficiency disorders in children: Challenges and outcome from a tertiary care center in South India. J Clin Immunol. 2019;39:182–7. https://doi.org/10.1007/s10875-019-00600-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balashov D, Shcherbina A, Maschan M, Trakhtman P, Skvortsova Y, Shelikhova L, et al. Single-center experience of unrelated and haploidentical stem cell transplantation with TCRαβ and CD19 depletion in children with primary immunodeficiency syndromes. Biol Blood Marrow Transplant. 2015;21:1955–62. https://doi.org/10.1016/j.bbmt.2015.07.008.

    Article  PubMed  Google Scholar 

  26. Elfeky R, Shah RM, Unni MNM, Ottaviano G, Rao K, Chiesa R, et al. New graft manipulation strategies improve the outcome of mismatched stem cell transplantation in children with primary immunodeficiencies. J Allergy Clin Immunol. 2019;144:280–93. https://doi.org/10.1016/j.jaci.2019.01.030.

    Article  PubMed  Google Scholar 

  27. Shah RM, Elfeky R, Nademi Z, Qasim W, Amrolia P, Chiesa R, et al. T-cell receptor αβ+ and CD19+ cell-depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. J Allergy Clin Immunol. 2018;141:1417–26. https://doi.org/10.1016/j.jaci.2017.07.008.

    Article  CAS  PubMed  Google Scholar 

  28. Osumi T, Yoshimura S, Sako M, Uchiyama T, Ishikawa T, Kawai T, et al. Prospective study of allogeneic hematopoietic stem cell transplantation with post-transplantation cyclophosphamide and antithymocyte globulin from HLA-mismatched related donors for nonmalignant diseases. Biol Blood Marrow Transplant. 2020;26:e286–91. https://doi.org/10.1016/j.bbmt.2020.08.008.

    Article  CAS  PubMed  Google Scholar 

  29. Fischer A, Hacein-Bey-Abina S. Gene therapy for severe combined immunodeficiencies and beyond. J Exp Med. 2020;217: e20190607. https://doi.org/10.1084/jem.20190607.

    Article  CAS  PubMed  Google Scholar 

  30. Horne A, Janka G, Maarten Egeler R, Gadner H, Imashuku S, Ladisch S, et al. Haematopoietic stem cell transplantation in haemophagocytic lymphohistiocytosis. Br J Haematol. 2005;129:622–30. https://doi.org/10.1111/j.1365-2141.2005.05501.x.

    Article  PubMed  Google Scholar 

  31. Ouachée-Chardin M, Elie C, de Saint BG, Le Deist F, Mahlaoui N, Picard C, et al. Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis: a single-center report of 48 patients. Pediatrics. 2006;117:e743–50. https://doi.org/10.1542/peds.2005-1789.

    Article  PubMed  Google Scholar 

  32. Locatelli F, Jordan MB, Allen C, Cesaro S, Rizzari C, Rao A, et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N Engl J Med. 2020;382:1811–22. https://doi.org/10.1056/NEJMoa1911326.

    Article  PubMed  Google Scholar 

  33. Ramanan KM, Uppuluri R, Ravichandran N, Patel S, Swaminathan VV, Jayakumar I, et al. Successful remission induction in refractory familial hemophagocytic lymphohistiocytosis with ruxolitinib as a bridge to hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2020;67: e28071. https://doi.org/10.1002/pbc.28071.

    Article  PubMed  Google Scholar 

  34. Forbes LR, Vogel TP, Cooper MA, Castro-Wagner J, Schussler E, Weinacht KG, et al. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J Allergy Clin Immunol. 2018;142:1665–9. https://doi.org/10.1016/j.jaci.2018.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K, Wolff D, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol. 2018;142:1932–46. https://doi.org/10.1016/j.jaci.2018.02.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349:436–40. https://doi.org/10.1126/science.aaa1663.

    Article  CAS  PubMed  Google Scholar 

  37. Rao VK, Webster S, Dalm VASH, Šedivá A, van Hagen PM, Holland S, et al. Effective “activated PI3Kδ syndrome”-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood. 2017;130:2307–16. https://doi.org/10.1182/blood-2017-08-801191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burroughs LM, Petrovic A, Brazauskas R, Liu X, Griffith LM, Ochs HD, et al. Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: a PIDTC report. Blood. 2020;135:2094–105. https://doi.org/10.1182/blood.2019002939.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shekhovtsova Z, Bonfim C, Ruggeri A, Nichele S, Page K, AlSeraihy A, et al. A risk factor analysis of outcomes after unrelated cord blood transplantation for children with Wiskott-Aldrich syndrome. Haematologica. 2017;102:1112–9. https://doi.org/10.3324/haematol.2016.158808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Furtado-Silva JM, Paviglianiti A, Ruggeri A, Boelens JJ, Veys P, Ahmari AA, et al. Risk factors affecting outcome of unrelated cord blood transplantation for children with familial haemophagocytic lymphohistiocytosis. Br J Haematol. 2019;184:397–404. https://doi.org/10.1111/bjh.15642.

    Article  CAS  PubMed  Google Scholar 

  41. Ohga S, Kudo K, Ishii E, Honjo S, Morimoto A, Osugi Y, et al. Hematopoietic stem cell transplantation for familial hemophagocytic lymphohistiocytosis and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in Japan. Pediatr Blood Cancer. 2010;54:299–306. https://doi.org/10.1002/pbc.22310.

    Article  PubMed  Google Scholar 

  42. Yanagimachi M, Kato K, Iguchi A, Sasaki K, Kiyotani C, Koh K, et al. Hematopoietic cell transplantation for chronic granulomatous disease in Japan. Front Immunol. 2020;11:1617. https://doi.org/10.3389/fimmu.2020.01617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiesa R, Wang J, Blok H-J, Hazelaar S, Neven B, Moshous D, et al. Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults. Blood. 2020;136:1201–11. https://doi.org/10.1182/blood.2020005590.

    Article  PubMed  Google Scholar 

  44. Güngör T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, et al. Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet. 2014;383:436–48. https://doi.org/10.1016/S0140-6736(13)62069-3.

    Article  CAS  PubMed  Google Scholar 

  45. Osumi T, Tomizawa D, Kawai T, Sako M, Inoue E, Takimoto T, et al. A prospective study of allogeneic transplantation from unrelated donors for chronic granulomatous disease with target busulfan-based reduced-intensity conditioning. Bone Marrow Transplant. 2019;54:168–72. https://doi.org/10.1038/s41409-018-0271-9.

    Article  CAS  PubMed  Google Scholar 

  46. Iguchi A, Cho Y, Yabe H, Kato S, Kato K, Hara J, et al. Long-term outcome and chimerism in patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation: a retrospective nationwide survey. Int J Hematol. 2019;110:364–9. https://doi.org/10.1007/s12185-019-02686-y.

    Article  CAS  PubMed  Google Scholar 

  47. Umeda K, Adachi S, Horikoshi Y, Imai K, Terui K, Endo M, et al. Allogeneic hematopoietic stem cell transplantation for Chediak-Higashi syndrome. Pediatr Transplant. 2016;20:271–5. https://doi.org/10.1111/petr.12626.

    Article  PubMed  Google Scholar 

  48. Burrows PD, Fischer A. Building networks for immunodeficiency diseases and immunology training. Nat Immunol. 2008;9:1005–7. https://doi.org/10.1038/ni0908-1005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Japan Marrow Donor Program, the cord blood banks in Japan, and the staff at the participating hospitals who attended to the patients and provided information for the TRUMP registry. We also thank Soichi Adachi, Shunichi Kato, Yasuo Horikoshi, Miharu Yabe, Nao Yoshida, Hiromitsu Takakura, Sae Ishimaru, Shinya Osone, Hidetoshi Takada, Nozomu Kawashima, Shinobu Tamura, Ayako Yamamori, Koji Kawaguchi, Akira Nishimura, Risa Matsumura, and Takako Miyamura, who supported this study as members of the Hereditary Disorder Working Group of the Japanese Society for Transplantation and Cellular Therapy. We would also like to thank Kay Tanita for her support in preparing the figures.

Funding

This work was supported by the Japanese Ministry of Health, Labor, and Welfare [grant number 20FC1053], and Japan Agency for Medical Research and Development [grant numbers JP19lk0201100 and JP19gk0110041].

Author information

Authors and Affiliations

Authors

Contributions

SM designed the research, analyzed the data, and wrote the manuscript. KU, MYan, AI, YS, HY, and KK revised the manuscript. MKu and YA verified the analytical method and analyzed the data. KO, TK, RT, MI, MYam, MS, YT, MKa, and HK recruited the patients and collected the data. MI, YH, and KK contributed to transplantation data management as members of the Japanese Data Center for hematopoietic cell transplantation. KI and TM designed the research and revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Kohsuke Imai.

Ethics declarations

Ethics Approval

The studies involving human participants were reviewed and approved by the Institutional Review Boards at the Japanese Society for Transplantation and Cellular Therapy (JSTCT) and Tokyo Medical and Dental University.

Consent to Participate/Publication

All participants (and/or their guardians) provided written informed consent for research use of their data and publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 11.0 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, S., Umeda, K., Kurata, M. et al. Hematopoietic Cell Transplantation for Inborn Errors of Immunity Other than Severe Combined Immunodeficiency in Japan: Retrospective Analysis for 1985–2016. J Clin Immunol 42, 529–545 (2022). https://doi.org/10.1007/s10875-021-01199-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-021-01199-w

Keywords

Navigation