Skip to main content

Advertisement

Log in

FOXN1 Deficiency: from the Discovery to Novel Therapeutic Approaches

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Since the discovery of FOXN1 deficiency, the human counterpart of the nude mouse, a growing body of evidence investigating the role of FOXN1 in thymus and skin, has been published. FOXN1 has emerged as fundamental for thymus development, function, and homeostasis, representing the master regulator of thymic epithelial and T cell development. In the skin, it also plays a pivotal role in keratinocytes and hair follicle cell differentiation, although the underlying molecular mechanisms still remain to be fully elucidated. The nude severe combined immunodeficiency phenotype is indeed characterized by the clinical hallmarks of athymia with severe T cell immunodeficiency, congenital alopecia, and nail dystrophy. In this review, we summarize recent discoveries in the field and give interesting perspective about new and promising therapeutic approaches for disorders of immune system with athymia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cirillo E, Giardino G, Gallo V, D’Assante R, Grasso F, Romano R, et al. Severe combined immunodeficiency—an update. Ann N Y Acad Sci. 2015;1356:90–106.

    Article  PubMed  Google Scholar 

  2. Pignata C, Fiore M, Guzzetta V, Castaldo A, Sebastio G, Porta F, et al. Congenital alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med Genet. 1996;65(2):167–70.

    Article  CAS  PubMed  Google Scholar 

  3. Markert ML, Marques J, Neven B, Devlin B, McCarthy E, Chinn I, et al. First use of thymus transplantation therapy for Foxn1 deficiency (nude/SCID): a report of two cases. Blood. 2011;117(2):688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chou J, Massaad MJ, Wakim RH, Bainter W, Dbaibo G, Geha RS. A novel mutation in FOXN1 resulting in SCID: a case report and literature review. Clin Immunol. 2014;155(1):30–2.

    Article  CAS  PubMed  Google Scholar 

  5. Radha Rama Devi A, Panday NN, Naushad SM. FOXN1 Italian founder mutation in Indian family: implications in prenatal diagnosis. Gene. 2017;627:222–5.

    Article  CAS  PubMed  Google Scholar 

  6. Kaufmann E, Knochel W. Five years on the wings of fork head. Mech Dev. 1996;57(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  7. Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res. 1966;8(3):295–309.

    Article  CAS  PubMed  Google Scholar 

  8. Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature. 1994;372(6501):103–7.

    Article  CAS  PubMed  Google Scholar 

  9. Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, Smith AJ, et al. Two genetically separable steps in the differentiation of thymic epithelium. Science. 1996;272(5263):886–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000;14(2):142–6.

    CAS  PubMed  Google Scholar 

  11. Brissette JL, Li J, Kamimura J, Lee D, Dotto GP. The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation. Genes Dev. 1996;10(17):2212–21.

    Article  CAS  PubMed  Google Scholar 

  12. Lee D, Prowse DM, Brissette JL. Association between mouse nude gene expression and the initiation of epithelial terminal differentiation. Dev Biol. 1999;208(2):362–74.

    Article  CAS  PubMed  Google Scholar 

  13. Eaton GJ. Hair growth cycles and wave patterns in “nude” mice. Transplantation. 1976;22(3):217–22.

    Article  CAS  PubMed  Google Scholar 

  14. Kopf-Maier P, Mboneko VF. Anomalies in the hormonal status of athymic nude mice. J Cancer Res Clin Oncol. 1990;116(3):229–31.

    Article  CAS  PubMed  Google Scholar 

  15. Gershwin ME. DiGeorge syndrome: congenital thymic hypoplasia. Animal model: congenitally athymic (nude) mouse. Am J Pathol. 1977;89(3):809–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cancrini C, Puliafito P, Digilio MC, Soresina A, Martino S, Rondelli R, et al. Clinical features and follow-up in patients with 22q11.2 deletion syndrome. J Pediatr. 2014;164(6):1475–80.

    Article  CAS  PubMed  Google Scholar 

  17. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JAS, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1:15071.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Adriani M, Martinez-Mir A, Fusco F, Busiello R, Frank J, Telese S, et al. Ancestral founder mutation of the nude (FOXN1) gene in congenital severe combined immunodeficiency associated with alopecia in southern Italy population. Ann Hum Genet. 2004;68(3):265–8.

    Article  CAS  PubMed  Google Scholar 

  19. Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol. 2006;6(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  20. Schorpp M, Hofmann M, Dear TN, Boehm T. Characterization of mouse and human nude genes. Immunogenetics. 1997;46(6):509–15.

    Article  CAS  PubMed  Google Scholar 

  21. Schlake T. The nude gene and the skin. Exp Dermatol. 2001;10(5):293–304.

    Article  CAS  PubMed  Google Scholar 

  22. Pignata C, Gaetaniello L, Masci AM, Frank J, Christiano A, Matrecano E, et al. Human equivalent of the mouse nude/SCID phenotype: long-term evaluation of immunological reconstitution after bone marrow transplantation. Blood. 2001;97(4):880–5.

    Article  CAS  PubMed  Google Scholar 

  23. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature. 2006;441(7096):992–6.

    Article  CAS  PubMed  Google Scholar 

  24. Su D, Navarre S, Oh W, Condie BG, Manley NR. A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol. 2003;4(11):1128–35.

    Article  CAS  PubMed  Google Scholar 

  25. Gordon J, Bennett AR, Blackburn CC, Manley NR. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev. 2001;103(1–2):141–3.

    Article  CAS  PubMed  Google Scholar 

  26. Itoi M, Tsukamoto N, Amagai T. Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus. Int Immunol. 2007;19(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Xiao S, Manley NR. Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood. 2009;113(3):567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng L, Guo J, Sun L, Fu J, Barnes PF, Metzger D, et al. Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem. 2010;285(8):5836–47.

    Article  CAS  PubMed  Google Scholar 

  29. Corbeaux T, Hess I, Swann JB, Kanzler B, Haas-Assenbaum A, Boehm T. Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc Natl Acad Sci U S A. 2010;107(38):16613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shakib S, Desanti GE, Jenkinson WE, Parnell SM, Jenkinson EJ, Anderson G. Checkpoints in the development of thymic cortical epithelial cells. J Immunol. 2009;182(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  31. Blackburn CC, Manley NR, Palmer DB, Boyd RL, Anderson G, Ritter MA. One for all and all for one: thymic epithelial stem cells and regeneration. Trends Immunol. 2002;23(8):391–5.

    Article  CAS  PubMed  Google Scholar 

  32. Manley NR, Blackburn CC. A developmental look at thymus organogenesis: where do the non-hematopoietic cells in the thymus come from? Curr Opin Immunol. 2003;15(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  33. Bleul CC, Boehm T. Chemokines define distinct microenvironments in the developing thymus. Eur J Immunol. 2000;30(12):3371–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, et al. Foxn1 regulates key targets genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol. 2016;17(10):1206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsukamoto N, Itoi M, Nishikawa M, Amagai T. Lack of Delta like 1 and 4 expressions in nude thymus anlages. Cell Immunol. 2005;234(2):77–80.

    Article  CAS  PubMed  Google Scholar 

  36. Hozumi K, Mailhos C, Negishi N, Hirano K, Yahata T, Ando K, et al. Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med. 2008;205(11):2507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol. 2014;14(6):377–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson G, Takahama Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 2012;33(6):256–63.

    Article  CAS  PubMed  Google Scholar 

  39. Anderson G, Jenkinson EJ. Lymphostromal interactions in thymic development and function. Nature Rev Immunol. 2001;1(1):31–40.

    Article  CAS  Google Scholar 

  40. Uddin MM, Ohigashi I, Motosugi R, Nakayama T, Sakata M, Hamazaki J, et al. Foxn1-b5t transcriptional axis controls CD8+ T-cell production in the thymus. Nat Commun. 2017;8:14419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pantelouris EM. Absence of thymus in a mouse mutant. Nature. 1968;217(5126):370–1.

    Article  CAS  PubMed  Google Scholar 

  42. Vigliano I, Gorrese M, Fusco A, Vitiello L, Amorosi S, Panico L, et al. FOXN1 mutation abrogates prenatal T-cell development in humans. J Med Genet. 2011;48(6):413–6.

    Article  CAS  PubMed  Google Scholar 

  43. Itoi M, Kawamoto H, Katsura Y, Amagai T. Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int Immunol. 2001;13(9):1203–11.

    Article  CAS  PubMed  Google Scholar 

  44. D’Assante R, Fusco A, Palamaro L, Giardino G, Gallo V, Cirillo E, et al. Unraveling the link between ectodermal disorders and primary immunodeficiencies. Int Rev Immunol. 2016;35(1):25–38.

    PubMed  Google Scholar 

  45. Auricchio L, Adriani M, Frank J, Busiello R, Christiano A, Pignata C. Nail distrophy associated with a heterozygous mutation of the nude/SCID human FOXN1 (WHN) gene. Arch Dermatol. 2005;141(5):647–8.

    Article  PubMed  Google Scholar 

  46. Watt FM, Kubler MD, Hotchin NA, Nicholson LJ, Adams JC. Regulation of keratinocyte terminal differentiation by integrin-extracellular matrix interactions. J Cell Sci. 1993;106(1):175–82.

    CAS  PubMed  Google Scholar 

  47. Meier N, Dear TN, Boehm T. Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. Mech Dev. 1999;89(1–2):215–21.

    Article  CAS  PubMed  Google Scholar 

  48. Hardy MH. The secret life of the hair follicle. Trends Genet. 1992;8(2):55–61.

    Article  CAS  PubMed  Google Scholar 

  49. Xiong Y, Harmon CS. Interleukin-1beta is differentially expressed by human dermal papilla cells in response to PKC activation and is a potent inhibitor of human hair follicle growth in organ culture. J Interf Cytokine Res. 1997;17(3):151–7.

    Article  CAS  Google Scholar 

  50. Takahashi T, Kamimura A, Shirai A, Yokoo Y. Several selective protein kinase C inhibitors including procyanidins promote hair growth. Skin Pharmacol Appl Skin Phisiol. 2000;13(3–4):133–42.

    Article  CAS  Google Scholar 

  51. Li J, Baxter RM, Weiner L, Goetinck PF, Calautti E, Brissette JL. Foxn1 promotes keratinocyte differentiation by regulating the activity of protein kinase C. Differentiation. 2007;75(8):694–701.

    Article  CAS  PubMed  Google Scholar 

  52. Janes SM, Ofstad TA, Campbell DH, Watt FM, Prowse DM. Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt. J Cell Sci. 2004;117(18):4157–68.

    Article  CAS  PubMed  Google Scholar 

  53. Amorosi S, D’Armiento M, Calcagno G, Russo I, Adriani M, Christiano AM, et al. FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic nude/SCID fetus. Clin Genet. 2008;73(4):380–4.

    Article  CAS  PubMed  Google Scholar 

  54. Amorosi S, Vigliano I, Giudice ED, Panico L, Maruotti GM, Fusco A, et al. Brain alteration in a nude/SCID fetus carrying FOXN1 homozygous. J Neurol Sci. 2010;298(1–2):121–3.

    Article  CAS  PubMed  Google Scholar 

  55. Weinstein DC, Ruiz i Atalba A, Chen WS, Hoodless P, Prezioso VR, Jessell TM, et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell. 1994;78(4):575–88.

    Article  CAS  PubMed  Google Scholar 

  56. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413(6855):519–23.

    Article  CAS  PubMed  Google Scholar 

  57. Rivers L, Gaspar HB. Severe combined immunodeficiency: recent development and guidance on clinical management. Arch Dis Child. 2015;100:667–72.

    Article  PubMed  Google Scholar 

  58. Davies EG. Immunodeficiency in DiGeorge syndrome and options for treating cases with complete athymia. Front Immunol. 2013;4:322.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Janda A, Sedlacek P, Honig M, Friedrich W, Champagne M, Matsumoto T, et al. Multicenter survey on the outcome of transplantation of hematopoietic cells in patients with the complete form of DiGeorge anomaly. Blood. 2010;116(13):2229–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Markert ML, Devlin BH, Chinn IK, McCarthy EA. Thymus transplantation in complete DiGeorge anomaly. Immunol Res. 2009;44(1–3):61–70.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Markert ML, Devlin BH, Alexieff MJ, Li J, McCarthy EA, Gupton SE, et al. Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation: outcome of 44 consecutive transplants. Blood. 2007;109(10):4539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Albuquerque A, Marques JG, Silva SL, Ligeiro D, Devline BH, Dutrieux J, et al. Human FOXN1-deficiency is associated with αβ double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation. PLoS One. 2012;7(5):e37042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levy E, Neven B, Entz-Werle N, Cribier B, Lipsker D. Post-thymus transplant vitiligo in a child with Foxn1 deficiency. Ann Dermatol Venereol. 2012;139(6–7):468–71.

    Article  CAS  PubMed  Google Scholar 

  64. Clark RA, Yamanaka K, Bai M, Dowgiert R, Kupper TS. Human skin cells support thymus-indipendent T cell development. J Clin Invest. 2005;115(11):3239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Palamaro L, Guarino V, Scalia G, Antonini D, De Falco L, Bianchino G, et al. Human skin-derived keratinocytes and fibroblasts co-culture on 3D poly ɛ-caprolactone scaffold support in vitro HSCs differentiation into T-lineage committed cells. Int Immunol. 2013;25(12):703–14.

    Article  CAS  PubMed  Google Scholar 

  66. Petrie HT. Role of thymic organ structure and stromal composition in steady-state postnatal T-cell production. Immunol Rev. 2002;189:8–19.

    Article  CAS  PubMed  Google Scholar 

  67. Petrie HT, Van Ewijk W. Thymus by numbers. Nat Immunol. 2002;3(7):604–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Pignata.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, V., Cirillo, E., Giardino, G. et al. FOXN1 Deficiency: from the Discovery to Novel Therapeutic Approaches. J Clin Immunol 37, 751–758 (2017). https://doi.org/10.1007/s10875-017-0445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-017-0445-z

Keywords

Navigation