Skip to main content

Advertisement

Log in

Long-Term Outcomes of Hematopoietic Stem Cell Transplantation for ZAP70 Deficiency

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

ZAP70 deficiency is a rare T + B + NK+ combined immunodeficiency with limited outcome data to help guide decisions around hematopoietic stem cell transplant (HSCT). We sought to understand the long-term clinical and immunologic outcomes of both conditioned and unconditioned HSCT for ZAP70 deficiency following transplant from a variety of graft sources. We performed a retrospective, single center review of all cases of HSCT for genetically confirmed ZAP70 deficiency since 1992. At a median of 13.5-year post-HSCT, 8/8 (100 %) patients are alive. Three received unconditioned bone marrow transplants from human leukocyte antigen (HLA)-matched siblings and achieved stable mixed donor-recipient T cell chimerism but low B cell (4–9 %) and absent to near-absent myeloid donor engraftment. Despite this, all three have normal immunoglobulin levels, have developed specific protective antibody responses to post-HSCT vaccinations, and have discontinued immunoglobulin replacement. Five patients received myeloablative conditioning (three T cell-depleted haploidentical and two unrelated cord blood) and have full donor chimerism for T and B cells and myeloid lineages. One patient experienced primary graft failure after serotherapy only. CD8 T cell count is normal in 5/8, high in 1/8, and low in 2/8. Infectious complications in 5/5 and autoimmune thrombocytopenia in one patient resolved post-HSCT. Mitogen proliferation to phytohemagglutinin was normal after HSCT in 8/8 patients. In total, seven have discontinued immunoglobulin replacement. In conclusion, HSCT using a variety of graft sources and approaches, including unconditioned matched sibling donor transplant, is a life-saving therapy for ZAP70 deficiency, providing excellent long-term immune function and resolution of clinical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AdV:

Adenovirus

ALC:

Absolute lymphocyte count

ANC:

Absolute neutrophil count

CMV:

Cytomegalovirus

FTT:

Failure to thrive

GI:

Gastrointestinal

GVHD:

Graft-versus-host disease

HLA:

Human leukocyte antigen

HSCT:

Hematopoietic stem cell transplant

ITP:

Immune thrombocytopenia purpura

IVIg:

Intravenous immunoglobulin

PBSCs:

Peripheral blood stem cells

PHA:

Phytohemagglutinin

PIDTC:

Primary Immune Deficiency Treatment Consortium

PJP:

Pneumocystis jiroveci

RSV:

Respiratory syncytial virus

SCID:

Severe combined immunodeficiency

TCR:

T cell receptor

TRECs:

T cell receptor excision circles

ZAP70:

Zeta chain-associated protein of 70 kDa

References

  1. Chan AC, van Oers NS, Tran A, Turka L, Law CL, Ryan JC, et al. Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TCR signaling. J Immunol. 1994;152(10):4758–66.

    CAS  PubMed  Google Scholar 

  2. Au-Yeung BB, Deindl S, Hsu LY, Palacios EH, Levin SE, Kuriyan J, et al. The structure, regulation, and function of ZAP-70. Immunol Rev. 2009;228(1):41–57. doi:10.1111/j.1600-065X.2008.00753.x.

    Article  CAS  PubMed  Google Scholar 

  3. Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell. 1994;76(5):947–58.

    Article  CAS  PubMed  Google Scholar 

  4. Roifman CM, Hummel D, Martinez-Valdez H, Thorner P, Doherty PJ, Pan S, et al. Depletion of CD8+ cells in human thymic medulla results in selective immune deficiency. J Exp Med. 1989;170(6):2177–82.

    Article  CAS  PubMed  Google Scholar 

  5. Monafo WJ, Polmar SH, Neudorf S, Mather A, Filipovich AH. A hereditary immunodeficiency characterized by CD8+ T lymphocyte deficiency and impaired lymphocyte activation. Clin Exp Immunol. 1992;90(3):390–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213(2):155–65. doi:10.1084/jem.20150888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turul T, Tezcan I, Artac H, de Bruin-Versteeg S, Barendregt BH, Reisli I, et al. Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur J Pediatr. 2009;168(1):87–93. doi:10.1007/s00431-008-0718-x.

    Article  PubMed  Google Scholar 

  8. Newell A, Dadi H, Goldberg R, Ngan BY, Grunebaum E, Roifman CM. Diffuse large B-cell lymphoma as presenting feature of Zap-70 deficiency. J Allergy Clin Immunol. 2011;127(2):517–20. doi:10.1016/j.jaci.2010.09.016.

    Article  PubMed  Google Scholar 

  9. Elder ME, Lin D, Clever J, Chan AC, Hope TJ, Weiss A, et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science. 1994;264(5165):1596–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mazer B, Harbeck RJ, Franklin R, Schwinzer R, Kubo R, Hayward A, et al. Phenotypic features of selective T cell deficiency characterized by absence of CD8+ T lymphocytes and undetectable mRNA for ZAP-70 kinase. Clin Immunol Immunopathol. 1997;84(2):129–38.

    Article  CAS  PubMed  Google Scholar 

  11. Chan AC, Kadlecek TA, Elder ME, Filipovich AH, Kuo WL, Iwashima M, et al. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science. 1994;264(5165):1599–601.

    Article  CAS  PubMed  Google Scholar 

  12. Kim VH, Murguia L, Schechter T, Grunebaum E, Roifman CM. Emergency treatment for zeta chain-associated protein of 70 kDa (ZAP70) deficiency. J Allergy Clin Immunol. 2013;131(4):1233–5. doi:10.1016/j.jaci.2012.09.020.

    Article  PubMed  Google Scholar 

  13. Akar HH, Patiroglu T, Akyildiz BN, Tekerek NU, Dogan MS, Doganay S, et al. Silent brain infarcts in two patients with zeta chain-associated protein 70 kDa (ZAP70) deficiency. Clin Immunol. 2015;158(1):88–91. doi:10.1016/j.clim.2015.03.014.

    Article  PubMed  Google Scholar 

  14. Esenboga S, Ayvaz DC, Cetinkaya PG, van der Burg M, Tezcan I. An infant with ZAP-70 deficiency with disseminated mycobacterial disease. J Clin Immunol. 2016;36(2):103–6. doi:10.1007/s10875-015-0229-2.

    Article  PubMed  Google Scholar 

  15. Hauck F, Blumenthal B, Fuchs S, Lenoir C, Martin E, Speckmann C, et al. SYK expression endows human ZAP70-deficient CD8 T cells with residual TCR signaling. Clin Immunol. 2015;161(2):103–9. doi:10.1016/j.clim.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  16. Karaca E, Karakoc-Aydiner E, Bayrak OF, Keles S, Sevli S, Barlan IB, et al. Identification of a novel mutation in ZAP70 and prenatal diagnosis in a Turkish family with severe combined immunodeficiency disorder. Gene. 2013;512(2):189–93. doi:10.1016/j.gene.2012.10.062.

    Article  CAS  PubMed  Google Scholar 

  17. Katamura K, Tai G, Tachibana T, Yamabe H, Ohmori K, Mayumi M, et al. Existence of activated and memory CD4+ T cells in peripheral blood and their skin infiltration in CD8 deficiency. Clin Exp Immunol. 1999;115(1):124–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toyabe S, Watanabe A, Harada W, Karasawa T, Uchiyama M. Specific immunoglobulin E responses in ZAP-70-deficient patients are mediated by Syk-dependent T-cell receptor signalling. Immunology. 2001;103(2):164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elder ME, Skoda-Smith S, Kadlecek TA, Wang F, Wu J, Weiss A. Distinct T cell developmental consequences in humans and mice expressing identical mutations in the DLAARN motif of ZAP-70. J Immunol. 2001;166(1):656–61.

    Article  CAS  PubMed  Google Scholar 

  20. Picard C, Dogniaux S, Chemin K, Maciorowski Z, Lim A, Mazerolles F, et al. Hypomorphic mutation of ZAP70 in human results in a late onset immunodeficiency and no autoimmunity. Eur J Immunol. 2009;39(7):1966–76. doi:10.1002/eji.200939385.

    Article  CAS  PubMed  Google Scholar 

  21. Meinl E, Lengenfelder D, Blank N, Pirzer R, Barata L, Hivroz C. Differential requirement of ZAP-70 for CD2-mediated activation pathways of mature human T cells. J Immunol. 2000;165(7):3578–83.

    Article  CAS  PubMed  Google Scholar 

  22. Noraz N, Schwarz K, Steinberg M, Dardalhon V, Rebouissou C, Hipskind R, et al. Alternative antigen receptor (TCR) signaling in T cells derived from ZAP-70-deficient patients expressing high levels of Syk. J Biol Chem. 2000;275(21):15832–8. doi:10.1074/jbc.M908568199.

    Article  CAS  PubMed  Google Scholar 

  23. Honig M, Schuetz C, Schwarz K, Rojewski M, Jacobsen E, Lahr G, et al. Immunological reconstitution in a patient with ZAP-70 deficiency following transfusion of blood lymphocytes from a previously transplanted sibling without conditioning. Bone Marrow Transplant. 2012;47(2):305–7. doi:10.1038/bmt.2011.71.

    Article  CAS  PubMed  Google Scholar 

  24. Fagioli F, Biasin E, Berger M, Nesi F, Saroglia EH, Miniero R, et al. Successful unrelated cord blood transplantation in two children with severe combined immunodeficiency syndrome. Bone Marrow Transplant. 2003;31(2):133–6. doi:10.1038/sj.bmt.1703800.

    Article  CAS  PubMed  Google Scholar 

  25. Barata LT, Henriques R, Hivroz C, Jouanguy E, Paiva A, Freitas AM, et al. Primary immunodeficiency secondary to ZAP-70 deficiency. Acta Med Port. 2001;14(4):413–7.

    CAS  PubMed  Google Scholar 

  26. Grazioli S, Bennett M, Hildebrand KJ, Vallance H, Turvey SE, Junker AK. Limitation of TREC-based newborn screening for ZAP70 severe combined immunodeficiency. Clin Immunol. 2014;153(1):209–10. doi:10.1016/j.clim.2014.04.015.

    Article  CAS  PubMed  Google Scholar 

  27. Grunebaum E, Mazzolari E, Porta F, Dallera D, Atkinson A, Reid B, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA. 2006;295(5):508–18. doi:10.1001/jama.295.5.508.

    Article  CAS  PubMed  Google Scholar 

  28. Dalal I, Reid B, Doyle J, Freedman M, Calderwood S, Saunders F, et al. Matched unrelated bone marrow transplantation for combined immunodeficiency. Bone Marrow Transplant. 2000;25(6):613–21. doi:10.1038/sj.bmt.1702215.

    Article  CAS  PubMed  Google Scholar 

  29. Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371(5):434–46. doi:10.1056/NEJMoa1401177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dvorak CC, Cowan MJ, Logan BR, Notarangelo LD, Griffith LM, Puck JM, et al. The natural history of children with severe combined immunodeficiency: baseline features of the first fifty patients of the primary immune deficiency treatment consortium prospective study 6901. J Clin Immunol. 2013;33(7):1156–64. doi:10.1007/s10875-013-9917-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shearer WT, Dunn E, Notarangelo LD, Dvorak CC, Puck JM, Logan BR, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133(4):1092–8. doi:10.1016/j.jaci.2013.09.044.

    Article  PubMed  Google Scholar 

  32. Felgentreff K, Perez-Becker R, Speckmann C, Schwarz K, Kalwak K, Markelj G, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141(1):73–82. doi:10.1016/j.clim.2011.05.007.

    Article  CAS  PubMed  Google Scholar 

  33. Soldin SJ, Brugnara C, Wong EC. Pediatric reference intervals. Sixthth ed. Washington: American Association for Clinical Chemistry Press; 2007.

    Google Scholar 

  34. Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112(5):973–80. doi:10.1016/j.jaci.2003.07.003.

    Article  PubMed  Google Scholar 

  35. van Gent R, van Tilburg CM, Nibbelke EE, Otto SA, Gaiser JF, Janssens-Korpela PL, et al. Refined characterization and reference values of the pediatric T- and B-cell compartments. Clin Immunol. 2009;133(1):95–107. doi:10.1016/j.clim.2009.05.020.

    Article  PubMed  Google Scholar 

  36. Roifman CM, Somech R, Kavadas F, Pires L, Nahum A, Dalal I, et al. Defining combined immunodeficiency. J Allergy Clin Immunol. 2012;130(1):177–83. doi:10.1016/j.jaci.2012.04.029.

    Article  CAS  PubMed  Google Scholar 

  37. Murphy WJ, Kumar V, Bennett M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J Exp Med. 1987;165(4):1212–7.

    Article  CAS  PubMed  Google Scholar 

  38. Haddad E, Leroy S, Buckley RH. B-cell reconstitution for SCID: should a conditioning regimen be used in SCID treatment? J Allergy Clin Immunol. 2013;131(4):994–1000. doi:10.1016/j.jaci.2013.01.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dvorak CC, Hassan A, Slatter MA, Honig M, Lankester AC, Buckley RH, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014;134(4):935–43. doi:10.1016/j.jaci.2014.06.021. e15.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Buckley RH. B-cell function in severe combined immunodeficiency after stem cell or gene therapy: a review. J Allergy Clin Immunol. 2010;125(4):790–7. doi:10.1016/j.jaci.2010.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999;340(7):508–16. doi:10.1056/NEJM199902183400703.

    Article  CAS  PubMed  Google Scholar 

  42. Buckley RH, Win CM, Moser BK, Parrott RE, Sajaroff E, Sarzotti-Kelsoe M. Post-transplantation B cell function in different molecular types of SCID. J Clin Immunol. 2013;33(1):96–110. doi:10.1007/s10875-012-9797-6.

    Article  CAS  PubMed  Google Scholar 

  43. Brager R, Haynes A, Grunenbaum E, Hoenig M, Al-Mousa H, Al-Herz W et al. Presentation and outcome of Zap 70 deficiency [Abstract]. Biol Blood Marrow Transplant. [Abstract]. In press 2015.

  44. Jilkina O, Thompson JR, Kwan L, Van Caeseele P, Rockman-Greenberg C, Schroeder ML. Retrospective TREC testing of newborns with severe combined immunodeficiency and other primary immunodeficiency disorders. Mol Genet Metab Reports. 2014;1:324–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Teresa Zelinski for performing the ZAP70 genetic testing and providing helpful suggestions on the manuscript. We would also like to thank the patients and their families who participated in this study. There was no funding for this study.

Authors’ Contributions

GC designed the study, collected the data, and had primary responsibility for the writing of the manuscript. TR summated the data, created tables, and helped with the writing and editing of the manuscript, including intellectual input into the interpretation. DW helped with writing and editing of the manuscript, including intellectual input into the interpretation. MS designed the study, collected the data, and helped with the writing and editing of the manuscript, including intellectual input into the interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey D. E. Cuvelier.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This project was approved by the Health Research Ethics Board at the University of Manitoba. As a retrospective study, formal consent of participants was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuvelier, G.D.E., Rubin, T.S., Wall, D.A. et al. Long-Term Outcomes of Hematopoietic Stem Cell Transplantation for ZAP70 Deficiency. J Clin Immunol 36, 713–724 (2016). https://doi.org/10.1007/s10875-016-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-016-0316-z

Keywords

Navigation