Skip to main content

Advertisement

Log in

A Female Patient with Incomplete Hemophagocytic Lymphohistiocytosis Caused by a Heterozygous XIAP Mutation Associated with Non-Random X-Chromosome Inactivation Skewed Towards the Wild-Type XIAP Allele

  • Astute Clinician Report
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

X-linked lymphoproliferative disease (XLP) is a rare inherited immunodeficiency that often leads to hemophagocytic lymphohistiocytosis (HLH). XLP can be classified as XLP1 or XLP2, caused by mutations in SH2D1A and XIAP, respectively. In women, X-chromosome inactivation (XCI) of most X-linked genes occurs on one of the X chromosomes in each cell. The choice of which X chromosome remains activated is generally random, although genetic differences and selective advantage may cause one of the X chromosomes to be preferentially inactivated. Here we describe three patients with pancytopenia, including one female patient, in a Japanese family with a novel XIAP mutation. All three patients exhibited deficient XIAP protein expression, impaired NOD2/XIAP signaling, and augmented activation-induced cell death. In the female patient, the paternally derived X chromosome was non-randomly and exclusively inactivated in her peripheral blood and hair root cells. In contrast to asymptomatic females, this patient exhibied non-random XCI skewed towards the wild-type XIAP allele. This is the first report of a female patient with incomplete HLH resulting from a heterozygous XIAP mutation in association with non-random XCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117:1522–9.

    Article  PubMed  Google Scholar 

  2. Ørstavik KH. X chromosome inactivation in clinical practice. Hum Genet. 2009;126:363–73.

    Article  PubMed  Google Scholar 

  3. Parolini O, Ressmann G, Haas OA, Pawlowsky J, Gadner H, Knapp W, et al. X-linked Wiskott–Aldrich syndrome in a girl. N Engl J Med. 1998;338:291–5.

    Article  CAS  PubMed  Google Scholar 

  4. Rigaud S, Fondanèche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444:110–4.

    Article  CAS  PubMed  Google Scholar 

  5. Marsh RA, Villanueva J, Zhang K, Snow AL, Su HC, Madden L, et al. A rapid flow cytometric screening test for X-linked lymphoproliferative disease due to XIAP deficiency. Cytometry B Clin Cytom. 2009;76:334–44.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Aguilar C, Lenoir C, Lambert N, Bègue B, Brousse N, Canioni D, et al. XIAP deficiency causes Crohn’s disease associated with defective NOD2 function. J Allergy Clin Immunol. 2014;134:1131–41. e9.

    Article  CAS  PubMed  Google Scholar 

  7. Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Annu Rev Med. 2012;63:233–46.

    Article  CAS  PubMed  Google Scholar 

  8. Kunishima S, Okuno Y, Yoshida K, Shiraishi Y, Sanada M, Muramatsu H, et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet. 2013;92:431–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yang X, Kanegane H, Nishida N, Imamura T, Hamamoto K, Miyashita R, et al. Clinical and genetic characteristics of XIAP deficiency in Japan. J Clin Immunol. 2012;32:411–20.

    Article  CAS  PubMed  Google Scholar 

  10. Wada T, Kanegane H, Ohta K, Katoh F, Imamura T, Nakazawa Y, et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine. 2014;65:74–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wengler GS, Parolini O, Fiorini M, Mella P, Smith H, Ugazio AG, et al. A PCR-based non-radioactive X-chromosome inactivation assay for genetic counseling in X-linked primary immunodeficiencies. Life Sci. 1997;61:1405–11.

    Article  CAS  PubMed  Google Scholar 

  12. Kubota T, Nonoyama S, Tonoki H, Masuno M, Imaizumi K, Kojima M, et al. A new assay for the analysis of X-chromosome inactivation based on methylation-specific PCR. Hum Genet. 1999;104:49–55.

    Article  CAS  PubMed  Google Scholar 

  13. Ammann S, Elling R, Gyrd-Hansen M, Dückers G, Bredius R, Burns SO, et al. A new functional assay for the diagnosis of X-linked inhibitor of apoptosis (XIAP) deficiency. Clin Exp Immunol. 2014;176:394–400.

    Article  CAS  PubMed  Google Scholar 

  14. Andreu N, Pujol-Moix N, Martinez-Lostao L, et al. Wiskott-Aldrich syndrome in a female with skewed X-chromosome inactivation. Blood Cells Mol Dis. 2003;31:332–7.

    Article  CAS  PubMed  Google Scholar 

  15. Boonyawat B, Dhanraj S, Al Abbas F, et al. Combined de-novo mutataion and non-ramdom X-chromosome inactivation causing Wiskott-Aldrich syndrome in a female with thrombocytopenia. J Clin Immunol. 2013;33:1150–5.

    Article  PubMed  Google Scholar 

  16. Anderson-Cohen M, Holland SM, Kuhns DB, et al. Severe phenotype of chronic granulomatous disease presenting in a female with a de nove mutation in gp91-phox and a non familial, extremely skewed X chromosome inactivation. Clin Immunol. 2003;109:308–17.

    Article  CAS  PubMed  Google Scholar 

  17. Lewis EM, Singla M, Sergeant S, Koty PP, McPhail LC. X-linked chronic granulomatous disease secondary to skewed X chromosome and late presenation. Clin Immunol. 2008;129:372–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gono T, Yazaki M, Agematsu K, et al. Adult onset X-linked chronic granulomatous disease in a woman patient caused by a de novo mutation in paternal-origin CYBB gene and skewed inactivation of normal maternal X chromosome. Inter Med. 2008;47:1053–6.

    Article  Google Scholar 

  19. Takada H, Kanegane H, Nomura A, et al. Female agammaglobulinemia due to the Bruton tyrosine kinase deficiency caused by extremely skewed X-chromosome inactivation. Blood. 2004;103:185–7.

    Article  CAS  PubMed  Google Scholar 

  20. Wengler G, Gorlin JB, Williamson JM, Rosen FS, Bing DH. Nonrandom inactivation of the X chromosome in early lineage hematopoietic cells in carriers of Wiskott-Aldrich syndrome. Blood. 1995;85:2471–7.

    CAS  PubMed  Google Scholar 

  21. Krieg A, Correa RG, Garrison JB, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci U S A. 2009;106:14524–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Damgaard RB, Fiil BK, Speckmann C, Yabal M, zur Stadt U, Bekker-Jensen S, et al. Disease-causing mutations in the XIAP BIR2 domain impair NOD2-dependent immune signalling. EMBO Mol Med. 2013;5:1278–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research on Measures for Intractable Disease Project, and grants from the Ministry of Health, Labour, and Welfare of Japan. We thank Chikako Sakai, Hitoshi Moriuchi, Dr. Yuichi Shiraishi, Dr. Kenichi Chiba, and Dr. Hiroko Tanaka for their excellent technical assistance. We are grateful to Dr. Sylvain Latour and the late Dr. Toshio Miyawaki for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Kanegane.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hoshino, A., Taga, T. et al. A Female Patient with Incomplete Hemophagocytic Lymphohistiocytosis Caused by a Heterozygous XIAP Mutation Associated with Non-Random X-Chromosome Inactivation Skewed Towards the Wild-Type XIAP Allele. J Clin Immunol 35, 244–248 (2015). https://doi.org/10.1007/s10875-015-0144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-015-0144-6

Keywords

Navigation