Skip to main content

Advertisement

Log in

Natural IgM: Beneficial Autoantibodies for the Control of Inflammatory and Autoimmune Disease

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Natural IgM are highly represented in the circulation at birth, and these often autoreactive antibodies have been postulated to have innate-like properties and play crucial roles in apoptotic cell clearance, tissue homeostasis, and immune modulation. This review summarizes the known properties of these IgM autoantibodies, and the evidence that these anti-apoptotic cell IgM natural antibodies can regulate inflammatory responses through ancient pathways of the innate immune system that first arose long before the initial emergence of the adaptive immune system. While the regulatory contributions of these natural IgM autoantibodies are certainly not an essential and fundamental component of host defenses, these provide an additional layer to further protect the host. More importantly, these IgM antibody responses are highly inducible and their up-regulation can be a powerful means for the host to survive in a setting of chronic inflammation. The observed beneficial clinical associations for cardiovascular disease and autoimmunity, as well as opportunities for potential therapeutic implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrlich P. On immunity with special reference to cell life. Proc R Soc Lond. 1900;66:424–48.

    CAS  Google Scholar 

  2. Avrameas S. Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol Today. 1991;12:154–9.

    CAS  PubMed  Google Scholar 

  3. Chou MY, Fogelstrand L, Hartvigsen K, Hansen LF, Woelkers D, Shaw PX, et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest. 2009;119:1335–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Meffre E, Salmon JE. Autoantibody selection and production in early human life. J Clin Invest. 2007;117:598–601.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. 2007;117:712–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Silverman GJ, Srikrishnan R, Germar K, Goodyear CS, Andrews KA, Ginzler EM, et al. Genetic imprinting of autoantibody repertoires in systemic lupus erythematosus patients. Clin Exp Immunol. 2008;153:102–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Haury M, Sundblad A, Grandien A, Barreau C, Coutinho A, Nobrega A. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur J Immunol. 1997;27:1557–63.

    CAS  PubMed  Google Scholar 

  8. Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11:34–46.

    CAS  PubMed  Google Scholar 

  9. Baumgarth N, Herman OC, Jager GC, Brown L, Herzenberg LA. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc Natl Acad Sci U S A. 1999;96:2250–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Holodick NE, Tumang JR, Rothstein TL. Immunoglobulin secretion by B1 cells: differential intensity and IRF4-dependence of spontaneous IgM secretion by peritoneal and splenic B1 cells. Eur J Immunol. 2010;40:3007–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Hayakawa K, Asano M, Shinton SA, Gui M, Allman D, Stewart CL, et al. Positive selection of natural autoreactive B cells. Science. 1999;285:113–6.

    CAS  PubMed  Google Scholar 

  12. Pillai S, Cariappa A, Moran ST. Positive selection and lineage commitment during peripheral B-lymphocyte development. Immunol Rev. 2004;197:206–18.

    CAS  PubMed  Google Scholar 

  13. Hardy RR, Carmack CE, Shinton SA, Riblet RJ, Hayakawa K. A single VH gene is utilized predominantly in anti-BrMRBC hybridomas derived from purified Ly-1 B cells. Definition of the VH11 family. J Immunol. 1989;142:3643–51.

    CAS  PubMed  Google Scholar 

  14. Mercolino TJ, Locke AL, Afshari A, Sasser D, Travis WW, Arnold LW, et al. Restricted immunoglobulin variable region gene usage by normal Ly-1 (CD5+) B cells that recognize phosphatidyl choline. J Exp Med. 1989;169:1869–77.

    CAS  PubMed  Google Scholar 

  15. Rowley B, Tang L, Shinton S, Hayakawa K, Hardy RR. Autoreactive B-1 B cells: constraints on natural autoantibody B cell antigen receptors. J Autoimmun. 2007;29:236–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang H, Clarke SH. Positive selection focuses the VH12 B-cell repertoire towards a single B1 specificity with survival function. Immunol Rev. 2004;197:51–9.

    CAS  PubMed  Google Scholar 

  17. Kantor AB, Merrill CE, Herzenberg LA, Hillson JL. An unbiased analysis of V(H)-D-J(H) sequences from B-1a, B-1b, and conventional B cells. J Immunol. 1997;158:1175–86.

    CAS  PubMed  Google Scholar 

  18. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med. 2011;208:67–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Griffin DO, Rothstein TL. Human b1 cell frequency: isolation and analysis of human b1 cells. Front Immunol. 2012;3:122.

    PubMed Central  PubMed  Google Scholar 

  20. Griffin DO, Rothstein TL. Human “orchestrator” CD11b(+) B1 cells spontaneously secrete interleukin-10 and regulate T-cell activity. Mol Med. 2012;18:1003–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Schroeder Jr HW, Mortari F, Shiokawa S, Kirkham PM, Elgavish RA, Bertrand 3rd FE. Developmental regulation of the human antibody repertoire. Ann N Y Acad Sci. 1995;764:242–60.

    CAS  PubMed  Google Scholar 

  22. Souto-Carneiro MM, Sims GP, Girschik H, Lee J, Lipsky PE. Developmental changes in the human heavy chain CDR3. J Immunol. 2005;175:7425–36.

    CAS  PubMed  Google Scholar 

  23. Casali P, Notkins AL. CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol Today. 1989;10:364–8.

    CAS  PubMed  Google Scholar 

  24. Casali P, Schettino EW. Structure and function of natural antibodies. Curr Top Microbiol Immunol. 1996;210:167–79.

    CAS  PubMed  Google Scholar 

  25. Rogosch T, Kerzel S, Hoss K, Hoersch G, Zemlin C, Heckmann M, et al. IgA response in preterm neonates shows little evidence of antigen-driven selection. J Immunol. 2012;189:5449–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Madi A, Bransburg-Zabary S, Kenett DY, Ben-Jacob E, Cohen IR. The natural autoantibody repertoire in newborns and adults: a current overview. Adv Exp Med Biol. 2012;750:198–212.

    CAS  PubMed  Google Scholar 

  27. Madi A, Hecht I, Bransburg-Zabary S, Merbl Y, Pick A, Zucker-Toledano M, et al. Organization of the autoantibody repertoire in healthy newborns and adults revealed by system level informatics of antigen microarray data. Proc Natl Acad Sci U S A. 2009;106:14484–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chen ZJ, Wheeler CJ, Shi W, Wu AJ, Yarboro CH, Gallagher M, et al. Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur J Immunol. 1998;28:989–94.

    CAS  PubMed  Google Scholar 

  29. Wang C, Turunen SP, Kummu O, Veneskoski M, Lehtimaki J, Nissinen AE, et al. Natural antibodies of newborns recognize oxidative stress-related malondialdehyde acetaldehyde adducts on apoptotic cells and atherosclerotic plaques. Int Immunol. 2013;25:575–87.

    CAS  PubMed  Google Scholar 

  30. Perlmutter RM, Kearney JF, Chang SP, Hood LE. Developmentally controlled expression of immunoglobulin VH genes. Science. 1985;227:1597–601.

    CAS  PubMed  Google Scholar 

  31. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999;286:2156–9.

    CAS  PubMed  Google Scholar 

  32. Baumgarth N, Tung JW, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol. 2005;26:347–62.

    CAS  PubMed  Google Scholar 

  33. de Cathelineau AM, Henson PM. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem. 2003;39:105–17.

    Google Scholar 

  34. Devitt A, Marshall LJ. The innate immune system and the clearance of apoptotic cells. J Leukoc Biol. 2011;90:447–57.

    CAS  PubMed  Google Scholar 

  35. Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol. 2007;7:964–74.

    CAS  PubMed  Google Scholar 

  36. Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 2010;6:280–9.

    PubMed  Google Scholar 

  37. Rosen A, Casciola-Rosen L. Autoantigens in systemic autoimmunity: critical partner in pathogenesis. J Intern Med. 2009;265:625–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB. I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med. 2002;196:655–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Chen Y, Khanna S, Goodyear CS, Park YB, Raz E, Thiel S, et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J Immunol. 2009;183:1346–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Chen Y, Park YB, Patel E, Silverman GJ. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J Immunol. 2009;182:6031–43.

    CAS  PubMed  Google Scholar 

  41. Czajkowsky DM, Shao Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc Natl Acad Sci U S A. 2009;106:14960–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Arnold JN, Dwek RA, Rudd PM, Sim RB. Mannan binding lectin and its interaction with immunoglobulins in health and in disease. Immunol Lett. 2006;106:103–10.

    CAS  PubMed  Google Scholar 

  43. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet. 1998;19:56–9.

    CAS  PubMed  Google Scholar 

  44. Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB. IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity. 2005;38:259–64.

    CAS  PubMed  Google Scholar 

  45. Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol. 2005;35:252–60.

    CAS  PubMed  Google Scholar 

  46. Stuart LM, Takahashi K, Shi L, Savill J, Ezekowitz RA. Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J Immunol. 2005;174:3220–6.

    CAS  PubMed  Google Scholar 

  47. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101:890–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Fadok VA, McDonald PP, Bratton DL, Henson PM. Regulation of macrophage cytokine production by phagocytosis of apoptotic and post-apoptotic cells. Biochem Soc Trans. 1998;26:653–6.

    CAS  PubMed  Google Scholar 

  49. Stuart LM, Lucas M, Simpson C, Lamb J, Savill J, Lacy-Hulbert A. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol. 2002;168:1627–35.

    CAS  PubMed  Google Scholar 

  50. Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc Natl Acad Sci U S A. 2007;104:14080–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest. 2002;109:41–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Notley CA, Brown MA, Wright GP, Ehrenstein MR. Natural IgM is required for suppression of inflammatory arthritis by apoptotic cells. J Immunol. 2011;186:4967–72.

    CAS  PubMed  Google Scholar 

  53. Gronwall C, Chen Y, Vas J, Khanna S, Thiel S, Corr M, et al. MAPK phosphatase-1 is required for regulatory natural autoantibody-mediated inhibition of TLR responses. Proc Natl Acad Sci U S A. 2012;109:19745–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Vas J, Gronwall C, Marshak-Rothstein A, Silverman GJ. Natural antibody to apoptotic cell membranes inhibits the proinflammatory properties of lupus autoantibody immune complexes. Arthritis Rheum. 2012;64:3388–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83.

    CAS  PubMed  Google Scholar 

  56. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 2002;415:977–83.

    CAS  PubMed  Google Scholar 

  57. Moncho-Amor V, Galardi-Castilla M, Perona R, Sastre L. The dual-specificity protein phosphatase MkpB, homologous to mammalian MKP phosphatases, is required for D. discoideum post-aggregative development and cisplatin response. Differentiation. 2011;81:199–207.

    CAS  PubMed  Google Scholar 

  58. Boes M, Schmidt T, Linkemann K, Beaudette BC, Marshak-Rothstein A, Chen J. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci U S A. 2000;97:1184–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ehrenstein MR, Cook HT, Neuberger MS. Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. J Exp Med. 2000;191:1253–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Lobo PI, Bajwa A, Schlegel KH, Vengal J, Lee SJ, Huang L, et al. Natural IgM anti-leukocyte autoantibodies attenuate excess inflammation mediated by innate and adaptive immune mechanisms involving Th-17. J Immunol. 2012;188:1675–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2009;120:417–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kyaw T, Tay C, Krishnamurthi S, Kanellakis P, Agrotis A, Tipping P, et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ Res. 2011;109:830–40.

    CAS  PubMed  Google Scholar 

  63. Cesena FH, Dimayuga PC, Yano J, Zhao X, Kirzner J, Zhou J, et al. Immune-modulation by polyclonal IgM treatment reduces atherosclerosis in hypercholesterolemic apoE−/− mice. Atherosclerosis. 2011;220:59–65.

    PubMed  Google Scholar 

  64. Binder CJ, Horkko S, Dewan A, Chang MK, Kieu EP, Goodyear CS, et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med. 2003;9:736–43.

    CAS  PubMed  Google Scholar 

  65. Jiang C, Zhao ML, Scearce RM, Diaz M. Activation-induced deaminase-deficient MRL/lpr mice secrete high levels of protective antibodies against lupus nephritis. Arthritis Rheum. 2011;63:1086–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Werwitzke S, Trick D, Kamino K, Matthias T, Kniesch K, Schlegelberger B, et al. Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the (NZB x NZW) F1 mouse. Arthritis Rheum. 2005;52:3629–38.

    CAS  PubMed  Google Scholar 

  67. Stoehr AD, Schoen CT, Mertes MM, Eiglmeier S, Holecska V, Lorenz AK, et al. TLR9 in peritoneal B-1b cells is essential for production of protective self-reactive IgM to control Th17 cells and severe autoimmunity. J Immunol. 2011;187:2953–65.

    CAS  PubMed  Google Scholar 

  68. Friedman P, Horkko S, Steinberg D, Witztum JL, Dennis EA. Dennis, Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. J Biol Chem. 2002;277:7010–20.

    CAS  PubMed  Google Scholar 

  69. Suthers B, Hansbro P, Thambar S, McEvoy M, Peel R, Attia J. Pneumococcal vaccination may induce anti-oxidized low-density lipoprotein antibodies that have potentially protective effects against cardiovascular disease. Vaccine. 2012;30:3983–5.

    CAS  PubMed  Google Scholar 

  70. Feizi T. Blood group antigens. Ii antigens. Proc R Soc Med. 1975;68:799–802.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Loomes LM, Uemura K, Feizi T. Interaction of Mycoplasma pneumoniae with erythrocyte glycolipids of I and i antigen types. Infect Immun. 1985;47:15–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Silberstein LE, Jefferies LC, Goldman J, Friedman D, Moore JS, Nowell PC, et al. Variable region gene analysis of pathologic human autoantibodies to the related i and I red blood cell antigens. Blood. 1991;78:2372–86.

    CAS  PubMed  Google Scholar 

  73. Turunen SP, Kummu O, Harila K, Veneskoski M, Soliymani R, Baumann M, et al. Recognition of Porphyromonas gingivalis gingipain epitopes by natural IgM binding to malondialdehyde modified low-density lipoprotein. PLoS One. 2012;7:e34910.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kroese FG, Bos NA. Peritoneal B-1 cells switch in vivo to IgA and these IgA antibodies can bind to bacteria of the normal intestinal microflora. Curr Top Microbiol Immunol. 1999;246:343–9. discussion 350.

    CAS  PubMed  Google Scholar 

  75. Kroese FG, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol. 1989;1:75–84.

    CAS  PubMed  Google Scholar 

  76. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011;17:1585–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Stoel M, Jiang HQ, van Diemen CC, Bun JC, Dammers PM, Thurnheer MC, et al. Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J Immunol. 2005;174:1046–54.

    CAS  PubMed  Google Scholar 

  78. Botto M, Walport MJ. C1q, autoimmunity and apoptosis. Immunobiology. 2002;205:395–406.

    CAS  PubMed  Google Scholar 

  79. Inoue T, Okumura Y, Shirama M, Ishibashi H, Kashiwagi S, Okubo H. Selective partial IgM deficiency: functional assessment of T and B lymphocytes in vitro. J Clin Immunol. 1986;6:130–5.

    CAS  PubMed  Google Scholar 

  80. Takeuchi T, Nakagawa T, Maeda Y, Hirano S, Sasaki-Hayashi M, Makino S, et al. Functional defect of B lymphocytes in a patient with selective IgM deficiency associated with systemic lupus erythematosus. Autoimmunity. 2001;34:115–22.

    CAS  PubMed  Google Scholar 

  81. Perrazio SF, Salomao R, Silva NP, Carneiro-Sampaio M, Andrade LEC. Serial screening shows that 28% of systemic lupus erythematosus adult patients carry an underlying primary immunodeficiency. Arthritis Rheum. 2012;64:S284.

    Google Scholar 

  82. Senaldi G, Ireland R, Bellingham AJ, Vergani D, Veerapan K, Wang F. IgM reduction in systemic lupus erythematosus. Arthritis Rheum. 1988;31:1213.

    CAS  PubMed  Google Scholar 

  83. Perniok A, Wedekind F, Herrmann M, Specker C, Schneider M. High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus. 1998;7:113–8.

    CAS  PubMed  Google Scholar 

  84. Gronwall C, Akhter E, Oh C, Burlingame RW, Petri M, Silverman GJ. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin Immunol. 2012;142:390–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Padilla ND, Ciurana C, van Oers J, Ogilvie AC, Hack CE. Levels of natural IgM antibodies against phosphorylcholine in healthy individuals and in patients undergoing isolated limb perfusion. J Immunol Methods. 2004;293:1–11.

    PubMed  Google Scholar 

  86. Ajeganova S, Fiskesund R, de Faire U, Hafstrom I, Frostegard J. Effect of biological therapy on levels of atheroprotective antibodies against phosphorylcholine and apolipoproteins in rheumatoid arthritis - a one year study. Clin Exp Rheumatol. 2011;29:942–50.

    PubMed  Google Scholar 

  87. Shaw PX, Horkko S, Chang MK, Curtiss LK, Palinski W, Silverman GJ, et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest. 2000;105:1731–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Horkko S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest. 1999;103:117–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Su J, Hua X, Concha H, Svenungsson E, Cederholm A, Frostegard J. Natural antibodies against phosphorylcholine as potential protective factors in SLE. Rheumatology (Oxford). 2008;47:1144–50.

    CAS  Google Scholar 

  90. Nishinarita S, Sawada S, Horie T. Phosphorylcholine antibodies in pulmonary infection. Med Microbiol Immunol. 1990;179:205–14.

    CAS  PubMed  Google Scholar 

  91. Schenkein HA, Gunsolley JC, Best AM, Harrison MT, Hahn CL, Wu J, et al. Antiphosphorylcholine antibody levels are elevated in humans with periodontal diseases. Infect Immun. 1999;67:4814–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Dunlap NE, Ballinger S, Reed T, Christian JC, Koopman WJ, Briles DE. The use of monozygotic and dizygotic twins to estimate the effects of inheritance on the levels of immunoglobulin isotypes and antibodies to phosphocholine. Clin Immunol Immunopathol. 1993;66:176–80.

    CAS  PubMed  Google Scholar 

  93. Rahman I, Atout R, Pedersen NL, de Faire U, Frostegard J, Ninio E, et al. Genetic and environmental regulation of inflammatory CVD biomarkers Lp-PLA2 and IgM anti-PC. Atherosclerosis. 2011;218:117–22.

    CAS  PubMed  Google Scholar 

  94. Anania C, Gustafsson T, Hua X, Su J, Vikstrom M, de Faire U, et al. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R214.

    PubMed Central  PubMed  Google Scholar 

  95. Fiskesund R, Su J, Bulatovic I, Vikstrom M, de Faire U, Frostegard J. IgM phosphorylcholine antibodies inhibit cell death and constitute a strong protection marker for atherosclerosis development, particularly in combination with other auto-antibodies against modified LDL. Results Immunol. 2012;2:13–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Su J, Georgiades A, Wu R, Thulin T, de Faire U, Frostegard J. Antibodies of IgM subclass to phosphorylcholine and oxidized LDL are protective factors for atherosclerosis in patients with hypertension. Atherosclerosis. 2006;188:160–6.

    CAS  PubMed  Google Scholar 

  97. Fiskesund R, Stegmayr B, Hallmans G, Vikstrom M, Weinehall L, de Faire U, et al. Low levels of antibodies against phosphorylcholine predict development of stroke in a population-based study from northern Sweden. Stroke. 2010;41:607–12.

    CAS  PubMed  Google Scholar 

  98. Sjoberg BG, Su J, Dahlbom I, Gronlund H, Wikstrom M, Hedblad B, et al. Low levels of IgM antibodies against phosphorylcholine-A potential risk marker for ischemic stroke in men. Atherosclerosis. 2009;203:528–32.

    PubMed  Google Scholar 

  99. Gronlund H, Hallmans G, Jansson JH, Boman K, Wikstrom M, de Faire U, et al. Low levels of IgM antibodies against phosphorylcholine predict development of acute myocardial infarction in a population-based cohort from northern Sweden. Eur J Cardiovasc Prev Rehabil. 2009;16:382–6.

    PubMed  Google Scholar 

  100. de Faire U, Frostegard J. Natural antibodies against phosphorylcholine in cardiovascular disease. Ann N Y Acad Sci. 2009;1173:292–300.

    PubMed  Google Scholar 

  101. Caidahl K, Hartford M, Karlsson T, Herlitz J, Pettersson K, de Faire U, et al. IgM-phosphorylcholine autoantibodies and outcome in acute coronary syndromes. Int J Cardiol. 2013;167:464–9.

    PubMed  Google Scholar 

  102. Carrero JJ, Hua X, Stenvinkel P, Qureshi AR, Heimburger O, Barany P, et al. Low levels of IgM antibodies against phosphorylcholine-A increase mortality risk in patients undergoing haemodialysis. Nephrol Dial Transplant. 2009;24:3454–60.

    CAS  PubMed  Google Scholar 

  103. Sobel M, Moreno KI, Yagi M, Kohler TR, Tang GL, Clowes AW, et al. Low levels of a natural IgM antibody are associated with vein graft stenosis and failure. J Vasc Surg. 2013;58:997–1005. e1001-1002.

    PubMed  Google Scholar 

  104. Eriksson UK, Sjoberg BG, Bennet AM, de Faire U, Pedersen NL, Frostegard J. Low levels of antibodies against phosphorylcholine in Alzheimer’s disease. J Alzheimers Dis. 2010;21:577–84.

    CAS  PubMed  Google Scholar 

  105. Fukumoto M, Shoji T, Emoto M, Kawagishi T, Okuno Y, Nishizawa Y. Antibodies against oxidized LDL and carotid artery intima-media thickness in a healthy population. Arterioscler Thromb Vasc Biol. 2000;20:703–7.

    CAS  PubMed  Google Scholar 

  106. Karvonen J, Paivansalo M, Kesaniemi YA, Horkko S. Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation. 2003;108:2107–12.

    CAS  PubMed  Google Scholar 

  107. Garrido-Sanchez L, Chinchurreta P, Garcia-Fuentes E, Mora M, Tinahones FJ. A higher level of IgM anti-oxidized LDL antibodies is associated with a lower severity of coronary atherosclerosis in patients on statins. Int J Cardiol. 2010;145:263–4.

    CAS  PubMed  Google Scholar 

  108. Tiller T, Tsuiji M, Yurasov S, Velinzon K, Nussenzweig MC, Wardemann H. Autoreactivity in human IgG + memory B cells. Immunity. 2007;26:205–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Barrett DJ, Ayoub EM. IgG2 subclass restriction of antibody to pneumococcal polysaccharides. Clin Exp Immunol. 1986;63:127–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. von Gunten S, Smith DF, Cummings RD, Riedel S, Miescher S, Schaub A, et al. Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J Allergy Clin Immunol. 2009;123:1268–76. e1215.

    Google Scholar 

  111. Anthony RM, Wermeling F, Ravetch JV. Novel roles for the IgG Fc glycan. Ann N Y Acad Sci. 2012;1253:170–80.

    CAS  PubMed  Google Scholar 

  112. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature. 2011;475:110–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Hess C, Winkler A, Lorenz AK, Holecska V, Blanchard V, Eiglmeier S, et al. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J Clin Invest. 2013;123:3788–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol. 2008;4:491–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Ferreira R, Barreto M, Santos E, Pereira C, Martins B, Andreia R, et al. Heritable factors shape natural human IgM reactivity to Ro60/SS-A and may predispose for SLE-associated IgG anti-Ro and anti-La autoantibody production. J Autoimmun. 2005;25:155–63.

    CAS  PubMed  Google Scholar 

  116. Pascual V, Victor K, Lelsz D, Spellerberg MB, Hamblin TJ, Thompson KM, et al. Nucleotide sequence analysis of the V regions of two IgM cold agglutinins. Evidence that the VH4-21 gene segment is responsible for the major cross-reactive idiotype. J Immunol. 1991;146:4385–91.

    CAS  PubMed  Google Scholar 

  117. Jenks SA, Palmer EM, Marin EY, Hartson L, Chida AS, Richardson C, et al. 9G4+ autoantibodies are an important source of apoptotic cell reactivity associated with high levels of disease activity in systemic lupus erythematosus. Arthritis Rheum. 2013;65:3165–75.

    CAS  PubMed  Google Scholar 

  118. Pugh-Bernard AE, Silverman GJ, Cappione AJ, Villano ME, Ryan DH, Insel RA, et al. Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J Clin Invest. 2001;108:1061–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Richardson C, Chida AS, Adlowitz D, Silver L, Fox E, Jenks SA, et al. Molecular basis of 9G4 B cell autoreactivity in human systemic lupus erythematosus. J Immunol. 2013;191:4926–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Bhat NM, Lee LM, van Vollenhoven RF, Teng NN, Bieber MM. VH4-34 encoded antibody in systemic lupus erythematosus: effect of isotype. J Rheumatol. 2002;29:2114–21.

    CAS  PubMed  Google Scholar 

  121. Bayry J, Negi VS, Kaveri SV. Intravenous immunoglobulin therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7:349–59.

    CAS  PubMed  Google Scholar 

  122. Kaveri SV. Intravenous immunoglobulin: exploiting the potential of natural antibodies. Autoimmun Rev. 2012;11:792–4.

    CAS  PubMed  Google Scholar 

  123. Wu R, Shoenfeld Y, Sherer Y, Patnaik M, Matsuura E, Gilburd B, et al. Anti-idiotypes to oxidized LDL antibodies in intravenous immunoglobulin preparations–possible immunomodulation of atherosclerosis. Autoimmunity. 2003;36:91–7.

    CAS  PubMed  Google Scholar 

  124. Bieber AJ, Warrington A, Asakura K, Ciric B, Kaveri SV, Pease LR, et al. Human antibodies accelerate the rate of remyelination following lysolecithin-induced demyelination in mice. Glia. 2002;37:241–9.

    PubMed  Google Scholar 

  125. Hurez V, Kazatchkine MD, Vassilev T, Ramanathan S, Pashov A, Basuyaux B, et al. Pooled normal human polyspecific IgM contains neutralizing anti-idiotypes to IgG autoantibodies of autoimmune patients and protects from experimental autoimmune disease. Blood. 1997;90:4004–13.

    CAS  PubMed  Google Scholar 

  126. Rieben R, Roos A, Muizert Y, Tinguely C, Gerritsen AF, Daha MR. Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood. 1999;93:942–51.

    CAS  PubMed  Google Scholar 

  127. Vassilev T, Yamamoto M, Aissaoui A, Bonnin E, Berrih-Aknin S, Kazatchkine MD, et al. Normal human immunoglobulin suppresses experimental myasthenia gravis in SCID mice. Eur J Immunol. 1999;29:2436–42.

    CAS  PubMed  Google Scholar 

  128. Alejandria MM, Lansang MA, Dans LF, Mantaring 3rd JB. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013;9, CD001090.

    PubMed  Google Scholar 

  129. Tugrul S, Ozcan PE, Akinci O, Seyhun Y, Cagatay A, Cakar N, et al. The effects of IgM-enriched immunoglobulin preparations in patients with severe sepsis [ISRCTN28863830]. Crit Care. 2002;6:357–62.

    PubMed Central  PubMed  Google Scholar 

  130. Watzlawik JO, Wootla B, Painter MM, Warrington AE, Rodriguez M. Cellular targets and mechanistic strategies of remyelination-promoting IgMs as part of the naturally occurring autoantibody repertoire. Expert Rev Neurother. 2013;13:1017–29.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Grönwall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grönwall, C., Silverman, G.J. Natural IgM: Beneficial Autoantibodies for the Control of Inflammatory and Autoimmune Disease. J Clin Immunol 34 (Suppl 1), 12–21 (2014). https://doi.org/10.1007/s10875-014-0025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-014-0025-4

Keywords

Navigation