Skip to main content

Advertisement

Log in

A randomized phase II study of autologous cytokine-induced killer cells in treatment of hepatocelluar carcinoma

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

This prospective study aims to explore the benefit of cytokine-induced killer cell (CIK) treatment in hepatocellular carcinoma patients, which has not yet been thoroughly studied before.

Methods

From January 2004 to May 2009, 132 patients who were initially diagnosed with hepatocellular carcinoma of Barcelona Clinic Liver Cancer (BCLC) stage A, B or C, Child–Pugh scores of A or B and without prior treatment were enrolled in the study. Patients were randomly assigned to either arm 1 (n = 66) to receive CIK treatment plus standard treatment, or arm 2 (n = 66) to receive standard treatment only. The primary end point was overall survival (OS) and the secondary endpoint was progression-free survival as evaluated by Kaplan–Meier analyses and treatment hazard ratios with the Cox proportional hazards model.

Results

The 1-year (OS: 74.2 % vs. 50.0 %, 95 % CI: 63.6–84.8 % vs. 37.8–62.2, p = 0.002), 2-year (OS: 53.0 % vs. 30.3 %, 95 % CI: 40.8–65.2 % vs. 19.1–41.5 %, p = 0.002), 3-year (OS: 42.4 % vs. 24.2 %, 95 % CI: 30.4–54.4 % vs. 13.8–34.6 %, p = 0.005) and median overall and progression-free survivals of arm 1 patients were significantly higher than those of arm 2. Therefore, in patients who are not suitable for surgery, significant benefit is obtained from CIK treatment. The main adverse effects of CIK included fever, allergy and headache pain.

Conclusions

Hepatocellular carcinoma patients who were not suitable for surgery demonstrate prolonged overall and progression-free survival from CIK treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19(3):271–85. doi:10.1055/s-2007-1007117.

    Article  CAS  PubMed  Google Scholar 

  2. Gritzapis AD, Dimitroulopoulos D, Paraskevas E, Baxevanis CN, Papamichail M. Large-scale expansion of CD3(+)CD56(+) lymphocytes capable of lysing autologous tumor cells with cytokine-rich supernatants. Cancer Immunol Immunother. 2002;51(8):440–8. doi:10.1007/s00262-002-0298-y.

    CAS  PubMed  Google Scholar 

  3. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999;340(10):745–50. doi:10.1056/NEJM199903113401001.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor-Robinson SD, Foster GR, Arora S, Hargreaves S, Thomas HC. Increase in primary liver cancer in the UK, 1979-94. Lancet. 1997;350(9085):1142–3. doi:10.1016/S0140-6736(05)63789-0.

    Article  CAS  PubMed  Google Scholar 

  5. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin. 1999;49(1):33–64.

    Article  CAS  PubMed  Google Scholar 

  6. Qiang L, Huikai L, Butt K, Wang PP, Hao X. Factors associated with disease survival after surgical resection in Chinese patients with hepatocellular carcinoma. World J Surg. 2006;30(3):439–45. doi:10.1007/s00268-005-0608-6.

    Article  PubMed  Google Scholar 

  7. Jarnagin WR. Management of small hepatocellular carcinoma: a review of transplantation, resection, and ablation. Ann Surg Oncol. 2010;17(5):1226–33. doi:10.1245/s10434-010-0978-3.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Truty MJ, Vauthey JN. Surgical resection of high-risk hepatocellular carcinoma: patient selection, preoperative considerations, and operative technique. Ann Surg Oncol. 2010;17(5):1219–25. doi:10.1245/s10434-010-0976-5.

    Article  PubMed  Google Scholar 

  9. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. 2001;35(3):421–30.

    Article  CAS  PubMed  Google Scholar 

  10. Livraghi T. Guidelines for treatment of liver cancer. Eur J Ultrasound. 2001;13(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  11. Lai EC, Fan ST, Lo CM, Chu KM, Liu CL, Wong J. Hepatic resection for hepatocellular carcinoma. An audit of 343 patients. Ann Surg. 1995;221(3):291–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ikai I, Itai Y, Okita K, Omata M, Kojiro M, Kobayashi K, et al. Report of the 15th follow-up survey of primary liver cancer. Hepatol Res. 2004;28(1):21–9.

    Article  PubMed  Google Scholar 

  13. Arii S, Yamaoka Y, Futagawa S, Inoue K, Kobayashi K, Kojiro M, et al. Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nationwide survey in Japan. The Liver Cancer Study Group of Japan. Hepatology. 2000;32(6):1224–9. doi:10.1053/jhep.2000.20456.

    Article  CAS  PubMed  Google Scholar 

  14. Fried MW. Treatment of hepatocellular carcinoma: medical options. Liver Transpl Surg. 1998;4(5 Suppl 1):S92–7.

    CAS  PubMed  Google Scholar 

  15. Schafer DF, Sorrell MF. Hepatocellular carcinoma. Lancet. 1999;353(9160):1253–7. doi:10.1016/S0140-6736(98)09148-X.

    Article  CAS  PubMed  Google Scholar 

  16. Ribero D, Curley SA, Imamura H, Madoff DC, Nagorney DM, Ng KK, et al. Selection for resection of hepatocellular carcinoma and surgical strategy: indications for resection, evaluation of liver function, portal vein embolization, and resection. Ann Surg Oncol. 2008;15(4):986–92. doi:10.1245/s10434-007-9731-y.

    Article  PubMed  Google Scholar 

  17. Vivarelli M, Guglielmi A, Ruzzenente A, Cucchetti A, Bellusci R, Cordiano C, et al. Surgical resection versus percutaneous radiofrequency ablation in the treatment of hepatocellular carcinoma on cirrhotic liver. Ann Surg. 2004;240(1):102–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kelley RK, Venook AP. Sorafenib in hepatocellular carcinoma: separating the hype from the hope. J Clin Oncol. 2008;26(36):5845–8. doi:10.1200/JCO.2008.19.7996.

    Article  PubMed  Google Scholar 

  19. Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100(10):698–711. doi:10.1093/jnci/djn134.

    Article  PubMed  Google Scholar 

  20. O'Neil BH, Venook AP. Hepatocellular carcinoma: the role of the North American GI Steering Committee Hepatobiliary Task Force and the advent of effective drug therapy. Oncologist. 2007;12(12):1425–32. doi:10.1634/theoncologist.12-12-1425.

    Article  PubMed  Google Scholar 

  21. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. doi:10.1056/NEJMoa0708857.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34. doi:10.1016/S1470-2045(08)70285-7.

    Article  CAS  PubMed  Google Scholar 

  23. Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24(26):4293–300. doi:10.1200/JCO.2005.01.3441.

    Article  CAS  PubMed  Google Scholar 

  24. Abou-Alfa GK. Selection of patients with hepatocellular carcinoma for sorafenib. J Natl Compr Canc Netw. 2009;7(4):397–403.

    CAS  PubMed  Google Scholar 

  25. Rosenberg S. Lymphokine-activated killer cells: a new approach to immunotherapy of cancer. J Natl Cancer Inst. 1985;75(4):595–603.

    CAS  PubMed  Google Scholar 

  26. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–21.

    Article  CAS  PubMed  Google Scholar 

  27. Yun YS, Hargrove ME, Ting CC. In vivo antitumor activity of anti-CD3-induced activated killer cells. Cancer Res. 1989;49(17):4770–4.

    CAS  PubMed  Google Scholar 

  28. Li R, Wang C, Liu L, Du C, Cao S, Yu J, et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study. Cancer Immunol Immunother. 2012. doi:10.1007/s00262-012-1260-2.

    Google Scholar 

  29. Jiang JT, Shen YP, Wu CP, Zhu YB, Wei WX, Chen LJ, et al. Increasing the frequency of CIK cells adoptive immunotherapy may decrease risk of death in gastric cancer patients. World J Gastroenterol. 2010;16(48):6155–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hui D, Qiang L, Jian W, Ti Z, Da-Lu K. A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Dig Liver Dis. 2009;41(1):36–41. doi:10.1016/j.dld.2008.04.007.

    Article  PubMed  Google Scholar 

  31. Liu L, Zhang W, Qi X, Li H, Yu J, Wei S, et al. Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res. 2012;18(6):1751–9. doi:10.1158/1078-0432.CCR-11-2442.

    Article  CAS  PubMed  Google Scholar 

  32. Deng Q, Bai X, Xiao X, Jiang Y, Li YM. Reversion of multidrug resistance by CIK in K562/ADR cells and its mechanism exploration. Zhonghua Xue Ye Xue Za Zhi. 2011;32(1):52–6.

    CAS  PubMed  Google Scholar 

  33. Schmidt-Wolf IG, Lefterova P, Mehta BA, Fernandez LP, Huhn D, Blume KG, et al. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol. 1993;21(13):1673–9.

    CAS  PubMed  Google Scholar 

  34. Marrero JA, Fontana RJ, Barrat A, Askari F, Conjeevaram HS, Su GL, et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology. 2005;41(4):707–16. doi:10.1002/hep.20636.

    Article  PubMed  Google Scholar 

  35. Ren X, Yu J, Liu H, Zhang P, An X, Zhang N, et al. Th1 bias in PBMC induced by multicycles of auto-CIKs infusion in malignant solid tumor patients. Cancer Biother Radiopharm. 2006;21(1):22–33. doi:10.1089/cbr.2006.21.22.

    Article  CAS  PubMed  Google Scholar 

  36. Li H, Wang C, Yu J, Cao S, Wei F, Zhang W, et al. Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy. 2009;11(8):1076–83. doi:10.3109/14653240903121252.

    Article  CAS  PubMed  Google Scholar 

  37. Tsuchida Y, Therasse P. Response evaluation criteria in solid tumors (RECIST): new guidelines. Med Pediatr Oncol. 2001;37(1):1–3. doi:10.1002/mpo.1154.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174(1):139–49.

    Article  CAS  PubMed  Google Scholar 

  39. Shi Y, Yu J, Cen X, Zhu P, Ma M. Large-capacity expanded cytoline-induced killer cells and its cytotoxic activity. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2001;18(1):94–6.

    CAS  PubMed  Google Scholar 

  40. Shablak A, Hawkins RE, Rothwell DG, Elkord E. T cell-based immunotherapy of metastatic renal cell carcinoma: modest success and future perspective. Clin Cancer Res. 2009;15(21):6503–10. doi:10.1158/1078-0432.CCR-09-1605.

    Article  CAS  PubMed  Google Scholar 

  41. Kakimi K, Nakajima J, Wada H. Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer. Lung Cancer. 2009;65(1):1–8. doi:10.1016/j.lungcan.2008.10.018.

    Article  PubMed  Google Scholar 

  42. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.

    Article  CAS  PubMed  Google Scholar 

  43. Whiteside TL, Miescher S, Hurlimann J, Moretta L, von Fliedner V. Separation, phenotyping and limiting dilution analysis of T-lymphocytes infiltrating human solid tumors. Int J Cancer. 1986;37(6):803–11.

    Article  CAS  PubMed  Google Scholar 

  44. Karimi M, Cao TM, Baker JA, Verneris MR, Soares L, Negrin RS. Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8+ T cells and NK cells. J Immunol. 2005;175(12):7819–28.

    CAS  PubMed  Google Scholar 

  45. Verneris MR, Karami M, Baker J, Jayaswal A, Negrin RS. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood. 2004;103(8):3065–72. doi:10.1182/blood-2003-06-2125 2003-06-2125.

    Article  CAS  PubMed  Google Scholar 

  46. Sun S, Li XM, Li XD, Yang WS. Studies on inducing apoptosis effects and mechanism of CIK cells for MGC-803 gastric cancer cell lines. Cancer Biother Radiopharm. 2005;20(2):173–80. doi:10.1089/cbr.2005.20.173.

    Article  CAS  PubMed  Google Scholar 

  47. Hoffman DM, Gitlitz BJ, Belldegrun A, Figlin RA. Adoptive cellular therapy. Semin Oncol. 2000;27(2):221–33.

    CAS  PubMed  Google Scholar 

  48. Nishimura R, Baker J, Beilhack A, Zeiser R, Olson JA, Sega EI, et al. In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood. 2008;112(6):2563–74. doi:10.1182/blood-2007-06-092817.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Thorne SH, Negrin RS, Contag CH. Synergistic antitumor effects of immune cell-viral biotherapy. Science. 2006;311(5768):1780–4. doi:10.1126/science.1121411.

    Article  CAS  PubMed  Google Scholar 

  50. Lu PH, Negrin RS. A novel population of expanded human CD3 + CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol. 1994;153(4):1687–96.

    CAS  PubMed  Google Scholar 

  51. Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG. Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol. 2011;137(2):305–10. doi:10.1007/s00432-010-0887-7.

    Article  CAS  PubMed  Google Scholar 

  52. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet. 2000;356(9232):802–7. doi:10.1016/S0140-6736(00)02654-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shizhen Emily Wang, from the Division of Tumor Cell Biology, Beckman Research Institute of City of Hope for providing help and assistance with this study. This project was supported by grants from the National Basic Research Program of China (973 program) (No. 2012CB9333004) and National Natural Science Funds (No. 81171983 and 30901754). The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Li or Xiubao Ren.

Additional information

Xiaozhou Yu and Hua Zhao these authors contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Zhao, H., Liu, L. et al. A randomized phase II study of autologous cytokine-induced killer cells in treatment of hepatocelluar carcinoma. J Clin Immunol 34, 194–203 (2014). https://doi.org/10.1007/s10875-013-9976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-013-9976-0

Keywords

Navigation