Skip to main content

Advertisement

Log in

Distinct Autoantibody Profiles in Systemic Lupus Erythematosus Patients are Selectively Associated with TLR7 and TLR9 Upregulation

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Systemic lupus erythematosus (SLE) patients have a wide array of autoantibodies against nuclear antigens. The two predominant classes of these autoantibodies are directed either against dsDNA or RNA-associated antigens (extractable nuclear antigens; ENA). Nucleic-acid sensing Toll-like receptors (TLRs) that recognize dsDNA and RNA, have been well implicated in some murine models of SLE. We took up this study to identify if unique TLR expression patterns are associated with distinct autoantibody profiles in SLE.

Methods

We segregated the patients into three subsets distinguished on the basis of autoantibody response either against dsDNA or ENA or both. We determined the mRNA expression of TLR3, 7, 8, and 9 by real-time reverse-transcription PCR in peripheral blood leucocytes (PBLs) of the SLE patients of all three subsets. TLR7 and 9 protein expression was determined by western blotting in PBLs and by flow cytometry on B-cells and monocytes. The serum interferon-alpha (IFN-α) and anti-dsDNA/-ENA autoantibodies were detected using enzyme-linked immunosorbant assay.

Results

We report differential and unique TLR expression patterns associated with different autoantibody profiles. The presence of anti-ENA and anti-dsDNA autoantibodies in SLE patients was associated with elevated levels of TLR7 and TLR9 respectively. The TLR9 mRNA expression was further augmented in SLE patients with Glomerulonephritis. Interestingly, anti-dsDNA+ ENA+ patients displayed higher serum IFN-α and interferon regulatory factor 7 mRNA expression than patients with either anti-dsDNA or anti-ENA autoantibodies alone.

Conclusion

Characteristic TLRs expression profile associated with distinct autoantibody repertoire is suggestive of differential immuno-regulatory pathways operative in different subsets of SLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum. 2004;34(2):501–37.

    Article  PubMed  CAS  Google Scholar 

  2. Manson JJ, Rahman A. Systemic lupus erythematosus. Orphanet J Rare Dis. 2006;1:6.

    Article  PubMed  Google Scholar 

  3. Linnik MD, Hu JZ, Heilbrunn KR, Strand V, Hurley FL, Joh T. Relationship between anti-double-stranded DNA antibodies and exacerbation of renal disease in patients with systemic lupus erythematosus. Arthritis Rheum. 2005;52(4):1129–37.

    Article  PubMed  CAS  Google Scholar 

  4. Mosca M, Chimenti D, Pratesi F, Baldini C, Anzilotti C, Bombardieri S, et al. Prevalence and clinico-serological correlations of anti-alpha-enolase, anti-C1q, and anti-dsDNA antibodies in patients with systemic lupus erythematosus. J Rheumatol. 2006;33(4):695–7.

    PubMed  CAS  Google Scholar 

  5. Sanchez-Guerrero J, Lew RA, Fossel AH, Schur PH. Utility of anti-Sm, anti-RNP, anti-Ro/SS-A, and anti-La/SS-B (extractable nuclear antigens) detected by enzyme-linked immunosorbent assay for the diagnosis of systemic lupus erythematosus. Arthritis Rheum. 1996;39(6):1055–61.

    Article  PubMed  CAS  Google Scholar 

  6. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA. 2006;103(26):9970–5.

    Article  PubMed  CAS  Google Scholar 

  7. Christensen SR, Kashgarian M, Alexopoulou L, Flavell RA, Akira S, Shlomchik MJ. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med. 2005;202(2):321–31.

    Article  PubMed  CAS  Google Scholar 

  8. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.

    Article  PubMed  CAS  Google Scholar 

  9. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    Article  PubMed  CAS  Google Scholar 

  10. Li M, Zhou Y, Feng G, Su SB. The critical role of Toll-like receptor signaling pathways in the induction and progression of autoimmune diseases. Curr Mol Med. 2009;9(3):365–74.

    Article  PubMed  CAS  Google Scholar 

  11. Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity. 2007;27(5):801–10.

    Article  PubMed  CAS  Google Scholar 

  12. Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 2006;25(3):417–28.

    Article  PubMed  CAS  Google Scholar 

  13. Papadimitraki ED, Choulaki C, Koutala E, Bertsias G, Tsatsanis C, Gergianaki I, et al. Expansion of toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process. Arthritis Rheum. 2006;54(11):3601–11.

    Article  PubMed  CAS  Google Scholar 

  14. Komatsuda A, Wakui H, Iwamoto K, Ozawa M, Togashi M, Masai R, et al. Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol. 2008;152(3):482–7.

    Article  PubMed  CAS  Google Scholar 

  15. Nakano S, Morimoto S, Suzuki J, Nozawa K, Amano H, Tokano Y, et al. Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus. Rheumatology (Oxford). 2008;47(2):145–9.

    Article  CAS  Google Scholar 

  16. Rai G, Ray S, Milton J, Yang J, Ren P, Lempicki R, et al. Gene expression profiles in a rabbit model of systemic lupus erythematosus autoantibody production. J Immunol. 2010;185(7):4446–56.

    Article  PubMed  CAS  Google Scholar 

  17. Mage RG, Rai G. A rabbit model of systemic lupus erythematosus, useful for studies of neuropsychiatric SLE. In: Almoallim H, editor. Systemic lupus erythematosus. Croatia: InTech; 2012. p. 201–16.

    Google Scholar 

  18. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725.

    Article  PubMed  CAS  Google Scholar 

  19. Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29(2):288–91.

    PubMed  Google Scholar 

  20. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3) + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.

    Article  PubMed  CAS  Google Scholar 

  21. O’Brien M, Manches O, Sabado RL, Baranda SJ, Wang Y, Marie I, et al. Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-alpha-producing and partially matured phenotype. J Clin Invest. 2011;121(3):1088–101.

    Article  PubMed  Google Scholar 

  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  23. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 2006;312(5780):1669–72.

    Article  PubMed  CAS  Google Scholar 

  24. Grammer AC, Lipsky PE. B cell abnormalities in systemic lupus erythematosus. Arthritis Res Ther. 2003;5 Suppl 4:S22–7.

    Article  PubMed  Google Scholar 

  25. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416(6881):603–7.

    Article  PubMed  CAS  Google Scholar 

  26. Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med. 2005;202(9):1171–7.

    Article  PubMed  CAS  Google Scholar 

  27. Li Y, Lee PY, Reeves WH. Monocyte and macrophage abnormalities in systemic lupus erythematosus. Arch Immunol Ther Exp (Warsz). 2010;58(5):355–64.

    Article  CAS  Google Scholar 

  28. Kaplan MJ. Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol. 2011;7(12):691–9.

    Article  PubMed  CAS  Google Scholar 

  29. Seitz HM, Matsushima GK. Dendritic cells in systemic lupus erythematosus. Int Rev Immunol. 2010;29(2):184–209.

    Article  PubMed  CAS  Google Scholar 

  30. Migita K, Miyashita T, Maeda Y, Nakamura M, Yatsuhashi H, Kimura H, et al. Toll-like receptor expression in lupus peripheral blood mononuclear cells. J Rheumatol. 2007;34(3):493–500.

    PubMed  CAS  Google Scholar 

  31. Zhang W, Shi Q, Xu X, Chen H, Lin W, Zhang F, et al. Aberrant CD40-induced NF-κB activation in human lupus B lymphocytes. PLoS One. 2012;7(8):e41644.

    Article  PubMed  CAS  Google Scholar 

  32. Wong CK, Wong PT, Tam LS, Li EK, Chen DP, Lam CW. Activation profile of intracellular mitogen-activated protein kinases in peripheral lymphocytes of patients with systemic lupus erythematosus. J Clin Immunol. 2009;29(6):738–46.

    Article  PubMed  CAS  Google Scholar 

  33. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 2005;434(7034):772–7.

    Article  PubMed  CAS  Google Scholar 

  34. Kim T, Kanayama Y, Negoro N, Okamura M, Takeda T, Inoue T. Serum levels of interferons in patients with systemic lupus erythematosus. Clin Exp Immunol. 1987;70(3):562–9.

    PubMed  CAS  Google Scholar 

  35. Zhang R, Xing M, Ji X, Gu L, Yang X, Wang H, et al. Interferon-alpha and interleukin-6 in SLE serum induce the differentiation and maturation of dendritic cells derived from CD34+ hematopoietic precursor cells. Cytokine. 2010;50(2):195–203.

    Article  PubMed  CAS  Google Scholar 

  36. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA. 2003;100(5):2610–5.

    Article  PubMed  CAS  Google Scholar 

  37. Arasappan D, Tong W, Mummaneni P, Fang H, Amur S. Meta-analysis of microarray data using a pathway-based approach identifies a 37-gene expression signature for systemic lupus erythematosus in human peripheral blood mononuclear cells. BMC Med. 2011;9:65.

    Article  PubMed  CAS  Google Scholar 

  38. Niewold TB, Hua J, Lehman TJ, Harley JB, Crow MK. High serum IFN-alpha activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 2007;8(6):492–502.

    Article  PubMed  CAS  Google Scholar 

  39. Lovgren T, Eloranta ML, Kastner B, Wahren-Herlenius M, Alm GV, Ronnblom L. Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren’s syndrome autoantigen-associated RNA. Arthritis Rheum. 2006;54(6):1917–27.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (BT/PR12772/BRB/10/722/2009) from the Department of Biotechnology, New Delhi, India. SKC is supported by senior research fellowship from Indian Council of Medical Research, New Delhi. The funding source had no involvement in study design, collection, analysis and interpretation of data, in the writing of the report as well as in the decision to submit the paper for publication. The authors would like to thank Dr Rose G. Mage, Laboratory of Immunology, National Institute of Health, Bethesda, USA for her valuable suggestions about the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, S.K., Singh, V.V., Rai, R. et al. Distinct Autoantibody Profiles in Systemic Lupus Erythematosus Patients are Selectively Associated with TLR7 and TLR9 Upregulation. J Clin Immunol 33, 954–964 (2013). https://doi.org/10.1007/s10875-013-9887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-013-9887-0

Keywords

Navigation