Skip to main content

Advertisement

Log in

Clinical Significance and Functional Studies of Myeloid-Derived Suppressor Cells in Chronic Hepatitis C Patients

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Myeloid-derived suppressor cells (MDSCs) are known to accumulate under some pathologic conditions and suppress immune system in a variety of ways. This study aims to evaluate the significance of MDSCs in chronic Hepatitis C (CHC) patients.

Methods

14 CHC patients and healthy donors were enrolled and subject to antiviral therapy including Peg-INF-alpha and Ribavirin for 48 weeks. The peripheral blood mononuclear cells (PBMCs) were collected at different weeks post-therapy and MDSC frequency was analyzed by flow cytometry. The correlation between MDSCs level with CHC disease parameters was analyzed by Spearman’s rank test. The suppressive function of MDSCs from CHC patients and the underlying mechanism was further evaluated.

Results

A significant elevation of MDSCs was observed in the peripheral blood of treatment-naive CHC patients compared with healthy donors. The level of MDSCs in CHC patients correlated with plasma HCV-RNA (r = 0.7164, p = 0.0039), blood aminotransaminase (r = 0.6116, p = 0.021), and activated CD38+ T cells (CD4+: r = 0.6649, p = 0.0095; CD8+: r = 0.6189, p = 0.0189). Initiation of clinical therapy reduced MDSC levels as early as 4 weeks, while it rebounded at week 12 post-therapy in patients. CHC-derived MDSCs could suppress T cell function in an arginase-1-dependent manner, that was distinct from the HCV core protein-generated MDSCs as previously reported.

Conclusion

Our study reveals a significant correlation between MDSC levels with HCV disease progression, and their response to antiviral therapy. The arginase-1-dependent mechanism of MDSCs from CHC patients indicates that arginase-1 may be promising target for HCV immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis. 2005;5(9):558–67.

    Article  PubMed  Google Scholar 

  2. Dustin LB, Rice CM. Flying under the radar: the immunobiology of hepatitis C. Annu Rev Immunol. 2007;25:71–99.

    Article  PubMed  CAS  Google Scholar 

  3. Peter Hofmann W, Sarrazin C, Zeuzem S. Current standards in the treatment of chronic hepatitis C. Dtsch Arztebl Int. 2012;109(19):352–8.

    Google Scholar 

  4. Fox AN, Jacobson IM. Recent successes and noteworthy future prospects in the treatment of chronic hepatitis C. Clin Infect Dis. 2012;55:S16–24.

    Article  PubMed  CAS  Google Scholar 

  5. Seeff LB. Natural history of chronic hepatitis C. Hepatology. 2002;36:S35–46.

    Article  PubMed  Google Scholar 

  6. Bialek SR, Terrault NA. The changing epidemiology and natural history of hepatitis C virus infection. Clin Liver Dis. 2006;10(4):697–715.

    Article  PubMed  Google Scholar 

  7. Bowen DG, Walker CM. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature. 2005;436(7053):946–52.

    Article  PubMed  CAS  Google Scholar 

  8. Rehermann B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest. 2009;119(7):1745–54.

    Article  PubMed  CAS  Google Scholar 

  9. Schulze Zur Wiesch J, Ciuffreda D, Lewis-Ximenez L, Kasprowicz V, Nolan BE, Streeck H, et al. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. J Exp Med. 2012;209(1):61–75.

    Article  PubMed  CAS  Google Scholar 

  10. Thimme R, Oldach D, Chang KM, Steiger C, Ray SC, Chisari FV. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med. 2001;194(10):1395–406.

    Article  PubMed  CAS  Google Scholar 

  11. Cooper S, Erickson AL, Adams EJ, Kansopon J, Weiner AJ, Chien DY, et al. Analysis of a successful immune response against hepatitis C virus. Immunity. 1999;10(4):439–49.

    Article  PubMed  CAS  Google Scholar 

  12. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

    Article  PubMed  CAS  Google Scholar 

  13. Greten TF, Manns MP, Korangy F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 2011;11(7):802–7.

    Article  PubMed  CAS  Google Scholar 

  14. Marhaba R, Vitacolonna M, Hildebrand D, Baniyash M, Freyschmidt-Paul P, Zöller M. The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol. 2007;179(8):5071–81.

    PubMed  CAS  Google Scholar 

  15. Haile LA, von Wasielewski R, Gamrekelashvili J, Krüger C, Bachmann O, Westendorf AM, et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology. 2008;135(3):871–81.

    Article  PubMed  CAS  Google Scholar 

  16. Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol. 2006;176(4):2085–94.

    PubMed  CAS  Google Scholar 

  17. Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother. 2012;35(2):107–15.

    Article  PubMed  Google Scholar 

  18. De Santo C, Salio M, Masri SH, Lee LY, Dong T, Speak AO, et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest. 2008;118(12)):4036–48.

    Article  PubMed  Google Scholar 

  19. Tacke RS, Lee HC, Goh C, Courtney J, Polyak SJ, Rosen HR, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology. 2012;55(2):343–53.

    Article  PubMed  CAS  Google Scholar 

  20. Chen S, Akbar SM, Abe M, Hiasa Y, Onji M. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol. 2011;166(1):134–42.

    Article  PubMed  CAS  Google Scholar 

  21. Vollbrecht T, Stirner R, Tufman A, Roider J, Huber RM, Bogner JR, et al. Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS. 2012;26(12):F31–7.

    Article  PubMed  CAS  Google Scholar 

  22. Zhou J, Cheng P, Youn JI, Cotter MJ, Gabrilovich DI. Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity. 2009;30(6):845–59.

    Article  PubMed  CAS  Google Scholar 

  23. Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010;22(2):238–44.

    Article  PubMed  CAS  Google Scholar 

  24. Adinolfi LE, Utili R, Andreana A, Tripodi MF, Marracino M, Gambardella M, et al. Serum HCV RNA levels correlate with histological liverdamage and concur with steatosis in progression of chronic hepatitis C. Dig Dis Sci. 2001;46(8):1677–83.

    Article  PubMed  CAS  Google Scholar 

  25. Shen T, Zheng J, Xu C, Liu J, Zhang W, Lu F, et al. PD-1 expression on peripheral CD8+ TEM/TEMRA subsets closely correlated with HCV viral load in chronic hepatitis C patients. Virol J. 2010;7:310.

    Article  PubMed  Google Scholar 

  26. Sandberg JK, Falconer K, Gonzalez VD. Chronic immune activation in the T cell compartment of HCV/HIV-1 co-infected patients. Virulence. 2010;1(3):177–9.

    Article  PubMed  Google Scholar 

  27. Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods. 2012;381:14–22.

    Article  PubMed  CAS  Google Scholar 

  28. Hoare M, Gelson WT, Rushbrook SM, Curran MD, Woodall T, Coleman N, et al. Histological changes in HCV antibody-positive, HCV RNA-negative subjects suggest persistent virus infection. Hepatology. 2008;48(6):1737–45.

    Article  PubMed  Google Scholar 

  29. Neuman MG, Benhamou JP, Marcellin P, Valla D, Malkiewicz IM, Katz GG, et al. Cytokine-chemokine and apoptotic signatures in patients with hepatitis C. Transl Res. 2007;149(3):126–36.

    Article  PubMed  CAS  Google Scholar 

  30. Neuman MG, Benhamou JP, Malkiewicz IM, Ibrahim A, Valla DC, Martinot-Peignoux M, et al. Kinetics of serum cytokines reflect changes in the severity of chronic hepatitis C presenting minimal fibrosis. J Viral Hepat. 2002;9(2):134–40.

    Article  PubMed  Google Scholar 

  31. Zeremski M, Dimova R, Brown Q, Jacobson IM, Markatou M, Talal AH. Peripheral CXCR3-associated chemokines as biomarkers of fibrosis in chronic hepatitis C virus infection. J Infect Dis. 2009;200(11):1774–80.

    Article  PubMed  CAS  Google Scholar 

  32. Askarieh G, Alsiö A, Pugnale P, Negro F, Ferrari C, Neumann AU, et al. DITTO-HCV and NORDynamIC Study Groups. Systemic and intrahepatic interferon-gamma-inducible protein 10 kDa predicts the first-phase decline in hepatitis C virus RNA and overall viral response to therapy in chronic hepatitis C. Hepatology. 2010;51(5):1523–30.

    Article  PubMed  Google Scholar 

  33. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. 2001;98(9):2736–44.

    Article  PubMed  CAS  Google Scholar 

  34. O’Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med. 2004;10(8):801–5.

    Article  PubMed  Google Scholar 

  35. Rushbrook SM, Ward SM, Unitt E, Vowler SL, Lucas M, Klenerman P, et al. Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J Virol. 2005;79(12):7852–9.

    Article  PubMed  CAS  Google Scholar 

  36. Cabrera R, Tu Z, Xu Y, Firpi RJ, Rosen HR, Liu C, et al. An immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in hepatitis C virus infection. Hepatology. 2004;40(5):1062–71.

    Article  PubMed  CAS  Google Scholar 

  37. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1 + CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Research Projects of National 12th Five-year Plan for the Prevention and Treatment of Major Infectious Diseases 2012ZX10001003-003, 2012ZX10001003-001, Guangdong Innovative Research Team Program 2009010058, National Natural Science Foundation of China 81072397, Natural Science Foundation of Guangdong S2011010005587, S2011020006072, the Fundamental Research Funds for the Central Universities (to J.Z.). We are grateful to the volunteers who participated in this study.

Conflict of interest

The authors declare no conflict of intest exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhou or Xiaoping Tang.

Additional information

Weiping Cai and Aiping Qin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Qin, A., Guo, P. et al. Clinical Significance and Functional Studies of Myeloid-Derived Suppressor Cells in Chronic Hepatitis C Patients. J Clin Immunol 33, 798–808 (2013). https://doi.org/10.1007/s10875-012-9861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9861-2

Keywords

Navigation