Skip to main content

Advertisement

Log in

Increased T-Cell Activation and Th1 Cytokine Concentrations Prior to the Diagnosis of B-Cell Lymphoma in HIV Infected Patients

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

Despite the use of combined antiretroviral therapy, HIV-infected individuals have a higher risk of developing B-cell lymphoma compared to the general population. We aim to explore whether lymphocyte activation, increase in Th1 response as well as markers of EBV reactivation, may precede lymphoma diagnosis.

Methods

Thirteen cases and 26 controls matched on CD4+ T-cell count and HIV plasma viral load were identified. Samples were collected 0 to 5 years prior to B-cell lymphoma diagnosis. Seven out of 13 (54 %) and 16/26 (61.5 %) of cases and controls were receiving antiretroviral therapy at the time of sampling, respectively. CD8+ T-cell activation and Th1 cytokine concentrations were measured before lymphoma onset, together with IgG antibodies directed against viral capsid antigen (VCA) and serum levels of EBV DNA.

Results

A higher level of CD8+ T-cell activation was observed in patients developing lymphoma. Four out of seven Th1 cytokine serum concentrations were significantly higher in patients with lymphoma than in the control group: IL-2R, IL-12p40/70, IFN-γ-inducible protein 10 (IP-10) and monokine induced by IFN-γ (MIG). Anti-VCA IgG level were significantly higher in cases than in controls. Four cases (30 %) but no controls had detectable EBV DNA in serum.

Conclusion

A higher level of T-cell activation, Th1 cytokine serum concentration and markers of EBV replication, preceded B-cell lymphoma diagnosis. This may suggest that viral antigen stimulation is associated with the genesis of lymphoma in HIV-infected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biggar RJ, Chaturvedi AK, Goedert JJ, Engels EA. AIDS-related cancer and severity of immunosuppression in persons with AIDS. J Natl Cancer Inst. 2007;99:962–72.

    Article  PubMed  Google Scholar 

  2. Engels EA, Pfeiffer RM, Goedert JJ, Virgo P, McNeel TS, Scoppa SM, et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20:1645–54.

    Article  PubMed  Google Scholar 

  3. Crum-Cianflone N, Hullsiek KH, Marconi V, Weintrob A, Ganesan A, Barthel RV, et al. Trends in the incidence of cancers among HIV-infected persons and the impact of antiretroviral therapy: a 20-year cohort study. AIDS. 2009;23:41–50.

    Article  PubMed  Google Scholar 

  4. Tulpule A, Levine A. AIDS-related lymphoma. Blood Rev. 1999;13:147–50.

    Article  PubMed  CAS  Google Scholar 

  5. Epeldegui M, Widney DP, Martinez-Maza O. Pathogenesis of AIDS lymphoma: role of oncogenic viruses and B cell activation-associated molecular lesions. Curr Opin Oncol. 2006;18:444–8.

    Article  PubMed  CAS  Google Scholar 

  6. Breen EC, Hussain SK, Magpantay L, Jacobson LP, Detels R, Rabkin CS, et al. B-cell stimulatory cytokines and markers of immune activation are elevated several years prior to the diagnosis of systemic AIDS-associated non-Hodgkin B-cell lymphoma. Cancer Epidemiol Biomarkers Prev. 2011;20:1303–14.

    Article  PubMed  CAS  Google Scholar 

  7. d’Ettorre G, Paiardini M, Ceccarelli G, Silvestri G, Vullo V. HIV-associated immune activation: from bench to bedside. AIDS Res Hum Retrovir. 2011;27:355–64.

    Article  PubMed  Google Scholar 

  8. Ortiz AM, Silvestri G. Immunopathogenesis of AIDS. Curr Infect Dis Rep. 2009;11:239–45.

    Article  PubMed  Google Scholar 

  9. Catalfamo M, Wilhelm C, Tcheung L, Proschan M, Friesen T, Park JH, et al. CD4 and CD8 T cell immune activation during chronic HIV infection: roles of homeostasis, HIV, type I IFN, and IL-7. J Immunol. 2011;186:2106–16.

    Article  PubMed  CAS  Google Scholar 

  10. Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008;214:231–41.

    Article  PubMed  CAS  Google Scholar 

  11. Deeks SG, Walker BD. The immune response to AIDS virus infection: good, bad, or both? J Clin Invest. 2004;113:808–10.

    PubMed  CAS  Google Scholar 

  12. Hazenberg MD, Stuart JW, Otto SA, Borleffs JC, Boucher CA, de Boer RJ, et al. T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood. 2000;95:249–55.

    PubMed  CAS  Google Scholar 

  13. French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells. J Infect Dis. 2009;200:1212–5.

    Article  PubMed  CAS  Google Scholar 

  14. Petrara MR, Cattelan AM, Zanchetta M, Sasset L, Freguja R, Gianesin K, et al. Epstein-Barr virus load and immune activation in human immunodeficiency virus type 1-infected patients. J Clin Virol. 2012;53:195–200.

    Article  PubMed  CAS  Google Scholar 

  15. Haas A, Zimmermann K, Oxenius A. Antigen-dependent and -independent mechanisms of T and B cell hyperactivation during chronic HIV-1 infection. J Virol. 2011;85:12102–13.

    Article  PubMed  CAS  Google Scholar 

  16. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA. EBV persistence in memory B cells in vivo. Immunity. 1998;9:395–404.

    Article  PubMed  CAS  Google Scholar 

  17. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.

    Article  PubMed  CAS  Google Scholar 

  18. Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med. 1984;310:1225–30.

    Article  PubMed  CAS  Google Scholar 

  19. Glaser SL, Lin RJ, Stewart SL, Ambinder RF, Jarrett RF, Brousset P, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375–82.

    Article  PubMed  CAS  Google Scholar 

  20. Carbone A. Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol. 2003;4:22–9.

    Article  PubMed  CAS  Google Scholar 

  21. Tirelli U, Spina M, Gaidano G, Vaccher E, Franceschi S, Carbone A. Epidemiological, biological and clinical features of HIV-related lymphomas in the era of highly active antiretroviral therapy. AIDS. 2000;14:1675–88.

    Article  PubMed  CAS  Google Scholar 

  22. Besson C, Goubar A, Gabarre J, Rozenbaum W, Pialoux G, Chatelet FP, et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood. 2001;98:2339–44.

    Article  PubMed  CAS  Google Scholar 

  23. Tuaillon E, Al Tabaa Y, Baillat V, Segondy M, Picot MC, Reynes J, et al. Close association of CD8+/CD38 bright with HIV-1 replication and complex relationship with CD4+ T-cell count. Cytom B Clin Cytom. 2009;76:249–60.

    Article  Google Scholar 

  24. Regidor DL, Detels R, Breen EC, Widney DP, Jacobson LP, Palella F, et al. Effect of highly active antiretroviral therapy on biomarkers of B-lymphocyte activation and inflammation. AIDS. 2011;25:303–14.

    Article  PubMed  CAS  Google Scholar 

  25. Kamat A, Misra V, Cassol E, Ancuta P, Yan Z, Li C, et al. A plasma biomarker signature of immune activation in HIV patients on antiretroviral therapy. PLoS One. 2012;7:e30881.

    Article  PubMed  CAS  Google Scholar 

  26. Breen EC, Boscardin WJ, Detels R, Jacobson LP, Smith MW, O’Brien SJ, et al. Non-Hodgkin’s B cell lymphoma in persons with acquired immunodeficiency syndrome is associated with increased serum levels of IL10, or the IL10 promoter -592 C/C genotype. Clin Immunol. 2003;109:119–29.

    Article  PubMed  CAS  Google Scholar 

  27. Breen EC, Fatahi S, Epeldegui M, Boscardin WJ, Detels R, Martinez-Maza O. Elevated serum soluble CD30 precedes the development of AIDS-associated non-Hodgkin’s B cell lymphoma. Tumour Biol. 2006;27:187–94.

    Article  PubMed  CAS  Google Scholar 

  28. Breen EC, van der Meijden M, Cumberland W, Kishimoto T, Detels R, Martinez-Maza O. The development of AIDS-associated Burkitt’s/small noncleaved cell lymphoma is preceded by elevated serum levels of interleukin 6. Clin Immunol. 1999;92:293–9.

    Article  PubMed  CAS  Google Scholar 

  29. Wong HL, Breen EC, Pfeiffer RM, Aissani B, Martinson JJ, Margolick JB, et al. Cytokine signaling pathway polymorphisms and AIDS-related non-Hodgkin lymphoma risk in the multicenter AIDS cohort study. AIDS. 2010;24:1025–33.

    Article  PubMed  CAS  Google Scholar 

  30. Widney D, Gundapp G, Said JW, van der Meijden M, Bonavida B, Demidem A, et al. Aberrant expression of CD27 and soluble CD27 (sCD27) in HIV infection and in AIDS-associated lymphoma. Clin Immunol. 1999;93:114–23.

    Article  PubMed  CAS  Google Scholar 

  31. Stevens SJ, Blank BS, Smits PH, Meenhorst PL, Middeldorp JM. High Epstein-Barr virus (EBV) DNA loads in HIV-infected patients: correlation with antiretroviral therapy and quantitative EBV serology. AIDS. 2002;16:993–1001.

    Article  PubMed  CAS  Google Scholar 

  32. Levacher M, Hulstaert F, Tallet S, Ullery S, Pocidalo JJ, Bach BA. The significance of activation markers on CD8 lymphocytes in human immunodeficiency syndrome: staging and prognostic value. Clin Exp Immunol. 1992;90:376–82.

    Article  PubMed  CAS  Google Scholar 

  33. Bofill M, Mocroft A, Lipman M, Medina E, Borthwick NJ, Sabin CA, et al. Increased numbers of primed activated CD8+ CD38+ CD45RO+ T cells predict the decline of CD4+ T cells in HIV-1-infected patients. AIDS. 1996;10:827–34.

    Article  PubMed  CAS  Google Scholar 

  34. Liu Z, Cumberland WG, Hultin LE, Kaplan AH, Detels R, Giorgi JV. CD8+ T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;18:332–40.

    Article  PubMed  CAS  Google Scholar 

  35. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis. 1999;179:859–70.

    Article  PubMed  CAS  Google Scholar 

  36. Lederman MM, Kalish LA, Asmuth D, Fiebig E, Mileno M, Busch MP. ‘Modeling’ relationships among HIV-1 replication, immune activation and CD4+ T-cell losses using adjusted correlative analyses. AIDS. 2000;14:951–8.

    Article  PubMed  CAS  Google Scholar 

  37. Boasso A, Shearer GM. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin Immunol. 2008;126:235–42.

    Article  PubMed  CAS  Google Scholar 

  38. Lehmann C, Harper JM, Taubert D, Hartmann P, Fatkenheuer G, Jung N, et al. Increased interferon alpha expression in circulating plasmacytoid dendritic cells of HIV-1-infected patients. J Acquir Immune Defic Syndr. 2008;48:522–30.

    Article  PubMed  CAS  Google Scholar 

  39. Padovan E, Spagnoli GC, Ferrantini M, Heberer M. IFN-alpha2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J Leukoc Biol. 2002;71:669–76.

    PubMed  CAS  Google Scholar 

  40. Gonzalez VD, Landay AL, Sandberg JK. Innate immunity and chronic immune activation in HCV/HIV-1 co-infection. Clin Immunol. 2010;135:12–25.

    Article  PubMed  CAS  Google Scholar 

  41. Roe B, Coughlan S, Hassan J, Grogan A, Farrell G, Norris S, et al. Elevated serum levels of interferon- gamma -inducible protein-10 in patients coinfected with hepatitis C virus and HIV. J Infect Dis. 2007;196:1053–7.

    Article  PubMed  CAS  Google Scholar 

  42. Teruya-Feldstein J, Jaffe ES, Burd PR, Kanegane H, Kingma DW, Wilson WH, et al. The role of Mig, the monokine induced by interferon-gamma, and IP-10, the interferon-gamma-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein-Barr virus-positive lymphoproliferative disease. Blood. 1997;90:4099–105.

    PubMed  CAS  Google Scholar 

  43. Teruya-Feldstein J, Jaffe ES, Burd PR, Kingma DW, Setsuda JE, Tosato G. Differential chemokine expression in tissues involved by Hodgkin’s disease: direct correlation of eotaxin expression and tissue eosinophilia. Blood. 1999;93:2463–70.

    PubMed  CAS  Google Scholar 

  44. Holscher C. The power of combinatorial immunology: IL-12 and IL-12-related dimeric cytokines in infectious diseases. Med Microbiol Immunol. 2004;193:1–17.

    Article  PubMed  Google Scholar 

  45. Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96:41–101.

    Article  PubMed  CAS  Google Scholar 

  46. Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity. 2001;14:105–10.

    PubMed  CAS  Google Scholar 

  47. Yoneda S, Umemura T, Joshita S, Ichijo T, Matsumoto A, Yoshizawa K, et al. Serum chemokine levels are associated with the outcome of pegylated interferon and ribavirin therapy in patients with chronic hepatitis C. Hepatol Res. 2011;41:587–93.

    Article  PubMed  CAS  Google Scholar 

  48. Landgren O, Goedert JJ, Rabkin CS, Wilson WH, Dunleavy K, Kyle RA, et al. Circulating serum free light chains as predictive markers of AIDS-related lymphoma. J Clin Oncol. 2010;28:773–9.

    Article  PubMed  CAS  Google Scholar 

  49. Grossman Z, Meier-Schellersheim M, Paul WE, Picker LJ. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat Med. 2006;12:289–95.

    Article  PubMed  CAS  Google Scholar 

  50. Besson C, Amiel C, Le-Pendeven C, Brice P, Ferme C, Carde P, et al. Positive correlation between Epstein-Barr virus viral load and anti-viral capsid immunoglobulin G titers determined for Hodgkin’s lymphoma patients and their relatives. J Clin Microbiol. 2006;44:47–50.

    Article  PubMed  CAS  Google Scholar 

  51. Stevens SJ, Smits PH, Verkuijlen SA, Rockx DA, van Gorp EC, Mulder JW, et al. Aberrant Epstein-Barr virus persistence in HIV carriers is characterized by anti-Epstein-Barr virus IgA and high cellular viral loads with restricted transcription. AIDS. 2007;21:2141–9.

    Article  PubMed  CAS  Google Scholar 

  52. Gasser O, Wolbers M, Steffen I, Hirsch HH, Battegay M, Hess C. Increased Epstein-Barr virus-specific antibody-levels in HIV-infected individuals developing primary central nervous system lymphoma. AIDS. 2007;21:1664–6.

    Article  PubMed  Google Scholar 

  53. Mueller N, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320:689–95.

    Article  PubMed  CAS  Google Scholar 

  54. de-The G, Geser A, Day NE, Tukei PM, Williams EH, Beri DP, et al. Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature. 1978;274:756–61.

    Article  PubMed  CAS  Google Scholar 

  55. Fan H, Kim SC, Chima CO, Israel BF, Lawless KM, Eagan PA, et al. Epstein-Barr viral load as a marker of lymphoma in AIDS patients. J Med Virol. 2005;75:59–69.

    Article  PubMed  Google Scholar 

  56. Navarro JT, Hernandez A, Rodriguez-Manzano J, Mate JL, Grau J, Morgades M, et al. Plasma Epstein-Barr viral load measurement as a diagnostic marker of lymphoma in HIV-infected patients. Med Clin (Barc). 2010;135:485–90.

    Article  Google Scholar 

  57. Al Tabaa Y, Tuaillon E, Jeziorski E, Ouedraogo DE, Bollore K, Rubbo PA, et al. B-cell polyclonal activation and Epstein-Barr viral abortive lytic cycle are two key features in acute infectious mononucleosis. J Clin Virol. 2011.

  58. Piriou ER, van Dort K, Nanlohy NM, Miedema F, van Oers MH, van Baarle D. Altered EBV viral load setpoint after HIV seroconversion is in accordance with lack of predictive value of EBV load for the occurrence of AIDS-related non-Hodgkin lymphoma. J Immunol. 2004;172:6931–7.

    PubMed  CAS  Google Scholar 

  59. Al Tabaa Y, Tuaillon E, Bollore K, Foulongne V, Petitjean G, Seigneurin JM, et al. Functional Epstein-Barr virus reservoir in plasma cells derived from infected peripheral blood memory B cells. Blood. 2009;113:604–11.

    Article  PubMed  Google Scholar 

  60. Bonnet F, Jouvencel AC, Parrens M, Leon MJ, Cotto E, Garrigue I, et al. A longitudinal and prospective study of Epstein-Barr virus load in AIDS-related non-Hodgkin lymphoma. J Clin Virol. 2006;36:258–63.

    Article  PubMed  Google Scholar 

  61. Drouet E, Brousset P, Fares F, Icart J, Verniol C, Meggetto F, et al. High Epstein-Barr virus serum load and elevated titers of anti-ZEBRA antibodies in patients with EBV-harboring tumor cells of Hodgkin’s disease. J Med Virol. 1999;57:383–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Infectiopole Sud for their financial support. We would also like to thank Emily Witty and Johannes Viljoen for the English review of the manuscript. This work was presented at the 6ème conférence francophone VIH/SIDA, AFRAVIH 2012 (Geneva, Switzerland, 25th to 28th of March 2012).

Conflict of interest

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eric Ouedraogo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouedraogo, D.E., Makinson, A., Kuster, N. et al. Increased T-Cell Activation and Th1 Cytokine Concentrations Prior to the Diagnosis of B-Cell Lymphoma in HIV Infected Patients. J Clin Immunol 33, 22–29 (2013). https://doi.org/10.1007/s10875-012-9766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9766-0

Keywords

Navigation