Skip to main content

Advertisement

Log in

Progress in Gammaglobulin Therapy for Immunodeficiency: From Subcutaneous to Intravenous Infusions and Back Again

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The year 1952 marked the first use of subcutaneous immunoglobulin therapy to treat primary immunodeficiency disease. Subsequently, intramuscular and then intravenous administration became the norm in the United States and most of Europe. Intravenous immunoglobulin therapy, however, can be burdensome and often causes systemic side effects. To overcome obstacles presented by the intravenous route of administration, subcutaneous preparations were developed. To further enhance patient satisfaction, adherence, and quality of life, enzyme-enhanced subcutaneous immunoglobulin administration using hyaluronidase, an enzyme spreading agent, was studied. The dose and flow rate of traditional subcutaneous immunoglobulin infusion is limited by the inhibition of bulk fluid flow by the extracellular matrix. Recombinant human hyaluronidase, administered with or immediately prior to infusate, increases the absorption and dispersion of infused fluids and drugs. Results from a phase III clinical trial indicate that subcutaneous immunoglobulin infusion, facilitated by recombinant human hyaluronidase, is well tolerated, and delivers infusion volumes at treatment intervals and rates equivalent to intravenous administration. This review surveys the state of the art of immunoglobulin replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yong PL, Boyle J, Ballow M, et al. Use of intravenous immunoglobulin and adjunctive therapies in the treatment of primary immunodeficiencies: A working group report of and study by the Primary Immunodeficiency Committee of the American Academy of Allergy Asthma and Immunology. Clin Immunol. 2010;135(2):255–63.

    Article  PubMed  CAS  Google Scholar 

  2. APIIEG. Consensus recommendations for the use of immunoglobulin replacement therapy in immune deficiency.2nd edition 2009.http://www.apiieg.org/files/1/APIIEG%20Consensus%20Recommendations%20Edition%201%20June%202008.pdf. Accessed 10/24/2011.

  3. Bruton O. Agammaglobulinemia. Pediatrics. 1952;9(6):722–8.

    PubMed  CAS  Google Scholar 

  4. Gardulf A, Nicolay U, Asensio O, et al. Rapid subcutaneous IgG replacement therapy is effective and safe in children and adults with primary immunodeficiencies—A prospective, multi-national study. J Clin Immunol. 2006;26(2):177–85.

    Article  PubMed  CAS  Google Scholar 

  5. Long AA, Denburg JA, Dent PB. Hypogammaglobulinemia: therapeutic rationale. CMAJ. 1987;137(9):793–7.

    PubMed  CAS  Google Scholar 

  6. MRC-WP, 1967. Hypogammaglobulinaemia in the United Kingdon. Summary report of a Medical Research Council working-party. Lancet. 1969;1(7587):163–8.

    Google Scholar 

  7. Skoda-Smith S, Torgerson TR, Ochs HD. Subcutaneous immunoglobulin replacement therapy in the treatment of patients with primary immunodeficiency disease. Ther Clin Risk Manag. 2010;6:1–10.

    PubMed  CAS  Google Scholar 

  8. Berger M. Principles of and advances in immunoglobulin replacement therapy for primary immunodeficiency. Immunol Allergy Clin N Am. 2008;28:413–37.

    Article  Google Scholar 

  9. Cunningham-Rundles C, Siegal FP, Smithwick EM, et al. Efficacy of intravenous immunoglobulin in primary humoral immunodeficiency disease. Ann Intern Med. 1984;101(4):435–9.

    PubMed  CAS  Google Scholar 

  10. Nolte MT, Pirofsky B, Gerritz GA, et al. Intravenous immunoglobulin therapy for antibody deficiency. Clin Exp Immunol. 1979;36:237–43.

    PubMed  CAS  Google Scholar 

  11. Roifman CM, Levison H, Gelfand EW. High-dose versus low-dose intravenous immunoglobulin in hypogammaglobulinaemia and chronic lung disease. Lancet. 1987;1(8541):1075–7.

    Article  PubMed  CAS  Google Scholar 

  12. Melamed I, Stein MR, Wasserman RL, Leibl H, Engl W, Yocum RC, et al. Recombinant human hyaluronidase facilitates dispersion of subcutaneously administered Gammagard liquid and enables administration of a full monthly dose in single site to patients with immunodeficiency diseases. J Allergy Clin Immunol. 2008;121(2):S83. Abstract #321.

    Article  Google Scholar 

  13. Schiff RI, Wasserman RL, Melamed I, Stein M, McCoy B, Leibl H, et al. Tolerability of immunoglobulin subcutaneous 10% administered SC following administration of recombinant human hyaluronidase in subjects with PID. XIVth Meeting of the European Society for Immunodeficiencies. Istanbul, Turkey, Oct. 6–10, 2010.

  14. Data on File. Westlake Village, CA: Baxter Healthcare Corporation; 2012.

  15. Daly PB, Evans JH, Kobayashi RH, et al. Home-based immunoglobulin infusion therapy: quality of life and patient health perceptions. Ann Allergy. 1991;67(5):504–10.

    PubMed  CAS  Google Scholar 

  16. Gardulf A, Bjorvell H, Gustafson R, et al. The life situations of patients with primary antibody deficiency untreated or treated with subcutaneous gammaglobulin infusions. Clin Exp Immunol. 1993;92:200–4.

    Article  PubMed  CAS  Google Scholar 

  17. Gardulf A, Andersen V, Bjorkander J, et al. Subcutaneous immunoglobulin replacement in patients with primary antibody deficiencies: safety and costs. Lancet. 1995;345:365–9.

    Article  PubMed  CAS  Google Scholar 

  18. Gardulf A. Immunoglobulin treatment for primary antibody deficiencies: advantages of the subcutaneous route. BioDrugs. 2007;21:105–16.

    Article  PubMed  CAS  Google Scholar 

  19. Kittner JM, Grimbacher B, Wulff W, et al. Patients’ attitude to subcutaneous immunoglobulin substitution as home therapy. J Clin Immunol. 2006;26:400–5.

    Article  PubMed  CAS  Google Scholar 

  20. Nicolay U, Kiessling P, Berger M, et al. Health-related quality of life and treatment satisfaction in North American patients with primary immunodeficiency diseases receiving subcutaneous IgG self-infusions at home. J Clin Immunol. 2006;26:65–72.

    Article  PubMed  CAS  Google Scholar 

  21. Berger M, Murphy E, Riley P, et al. Improved quality of life, immunoglobulin G levels, and infection rates in patients with primary immunodeficiency diseases during self-treatment with subcutaneous immunoglobulin G. South Med J. 2010;103(9):856–63.

    Article  PubMed  Google Scholar 

  22. Kaveri SV, Maddur MS, Hegde P, et al. Intravenous immunoglobulins in immunodeficiencies: more than mere replacement therapy. Clin Exp Immunol. 2011;164 Suppl 2:2–5.

    Article  PubMed  CAS  Google Scholar 

  23. Lucas M, Lee M, Lortan J, et al. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J Allergy Clin Immunol. 2010;125(6):1354–60.

    Article  PubMed  CAS  Google Scholar 

  24. Orange JS, Grossman WJ, Navickis RJ, et al. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: A meta-analysis of clinical studies. Clin Immunol. 2010;137(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  25. Bonagura VR, Marchlewski R, Cox A, et al. Biologic IgG level in primary immunodeficiency disease: the IgG level that protects against recurrent infection. J Allergy Clin Immunol. 2008;122(1):210–2.

    Article  PubMed  CAS  Google Scholar 

  26. Misbah S, Kuijpers T, van der Heijden J, et al. Bringing immunoglobulin knowledge up to date: how should we treat today? Clin Exp Immunol. 2011;166(1):16–25.

    Article  PubMed  CAS  Google Scholar 

  27. Food and Drug Administration. Guidance for Industry: Safety, Efficacy, and Pharmacokinetic Studies to Support Marketing of Immune Globulin Intravenous (Human) as Replacement Therapy for Primary Humoral Immunodeficiency. http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Blood/ucm078526.pdf. June 2008. Accessed 12/1/2011.

  28. Gammagard Liquid [immune globulin intravenous (human)] 10% Prescribing Information. Westlake Village, CA: Baxter Healthcare Corporation, July, 2011.

  29. Gamunex-C (Immune Globulin Intravenous [Human] 10% Caprylate/Chromatography Purified) 10% Liquid Preparation Prescribing Information. Research Triangle Park, NC: Talecris Biotherapeutics, Inc., 2010.

  30. Hizentra Immune Globulin Subcutaneous (Human) 20 % Liquid Prescribing Information. Kankakee, IL: CSL Behring LLC, 2010.

  31. Vivaglobin Immune Globulin Subcutaneous (Human) 16 % Liquid Prescribing Information. Kankakee, IL: CSL Behring LLC, 2010

  32. Siegel J. Safety considerations in IGIV utilization. Int Immunopharmacol. 2006;6:523–7.

    Article  PubMed  CAS  Google Scholar 

  33. Stein MR. The new generation of liquid intravenous immunoglobulin formulations in patient care: a comparison of intravenous immunoglobulins. Postgrad Med. 2010;122(5):176–84.

    Article  PubMed  Google Scholar 

  34. Food and Drug Administration: Title 21-Food and Drugs, Chapter I - Food and Drug Administration, Department of Health and Human Services, Subchapter F-biologics, part 640 additional standards for human blood and blood products. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=640&showFR=1&subpartNode=21:7.0.1.1.7.10. Revised April 1, 2011. Accessed 12/1/2011.

  35. Carbone J. Adverse reactions and pathogen safety of intravenous immunoglobulin. Curr Drug Saf. 2007;2:9–18.

    Article  PubMed  CAS  Google Scholar 

  36. Hooper JA. Intravenous immunoglobulins: evolution of commercial IVIG preparations. Immunol Allergy Clin North Am. 2008;28(4):765–78. viii.

    Article  PubMed  Google Scholar 

  37. Jolles S, Sewell WAC, Mishah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. 2005;142:1–11.

    Article  PubMed  CAS  Google Scholar 

  38. Immune Deficiency Foundation. Characteristics of Immune Globulin Products Currently Licensed for Use in the United States. Updated 2011.http://primaryimmune.org/wp-content/uploads/2011/11/Ig-Therapy-Chart-rv-10.11.pdf. Accessed 12/7/2011.

  39. Shah S. Pharmacy considerations for the use of IGIV therapy. Am J Health Syst Pharm. 2005;62 Suppl 3:S5–11.

    Article  PubMed  Google Scholar 

  40. Rachid R, Bonilla FA. The role of anti-IgA antibodies in causing adverse reactions to gamma globulin infusion in immunodeficient patients: a comprehensive review of the literature. J Allergy Clin Immunol. 2012;129(3):628–34.

    Article  PubMed  CAS  Google Scholar 

  41. Siegel J. Immune Globulins: therapeutic, pharmaceutical, cost, and administration considerations. Pharm Pract News. 2011; Jan:23–29.

    Google Scholar 

  42. Berger M. Incidence of infection is inversely related to steady-state (trough) serum IgG level in studies of subcutaneous IgG in PID. J Clin Immunol. 2011;31(5):924–6.

    Article  PubMed  CAS  Google Scholar 

  43. Centers for Disease Control and Prevention. Renal insufficiency and failure associated with immune globulin intravenous therapy—United States, 1985–1998. MMWR Morb Mortal Wkly Rep. 1999;48(24):518–21.

    Google Scholar 

  44. Gaines AR, Pierce LR, Bernhardt PA. Hyperglycemia: falsely elevated blood glucose readings with a point-of-care meter due to a maltose-containing intravenous immune globulin product. 6/18/2009. http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/ucm155099.htm. Accessed 5/18/2011.

  45. Food and Drug Administration. Urgent-Voluntary Market withdrawal of Octagam [Immune globulin Intravenous (human)] 5 % liquid preparation. August 20, 2010. http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/Recalls/ucm223897.htm. Accessed 3/8/2012.

  46. Emerson GG, Herndon CN, Sreih AG. Thrombotic complications after intravenous immunoglobulin therapy in two patients.Pharmacother. 2002;22(12).

  47. Katz U, Achiron A, Sherer Y, et al. Safety of intravenous immunoglobulin (IVIG) therapy. Autoimmun Rev. 2007;6:257–9.

    Article  PubMed  CAS  Google Scholar 

  48. Brennan VM, Salome-Bentley NJ, Chapel HM. Prospective audit of adverse reactions occurring in 459 primary antibody-deficient patients receiving intravenous immunoglobulin. Clin Exp Immunol. 2003;133:247–51.

    Article  PubMed  CAS  Google Scholar 

  49. Shah S, Vervan M. Use of i.v. immune globulin and occurrence of associated acute renal failure and thrombosis. Am J Health Syst Pharm. 2005;62(7):720–5.

    PubMed  Google Scholar 

  50. Sati HI, Ahya R, Watson HG. Incidence and associations of acute renal failure complicating high-dose intravenous immunoglobulin therapy. Br J Haematol. 2001;113(2):556–7.

    Article  PubMed  CAS  Google Scholar 

  51. Vo AA, Cam V, Toyoda M, Puliyanda DP, Lukovsky M, Bunnapradist S, et al. Safety and adverse events profiles of intravenous gammaglobulin products used for immunomodulation: a single-center experience. Clin J Am Soc Nephrol. 2006;1(4):844–52.

    Article  PubMed  CAS  Google Scholar 

  52. Berger M. Choices in IgG replacement therapy for primary immune deficiency diseases: subcutaneous IgG vs. intravenous IgG and selecting an optimal dose. Curr Opin Allergy Clin Immunol. 2011;11(6):532–8.

    Article  PubMed  CAS  Google Scholar 

  53. Gaspar J, Gerritsen B, Jones A. Immunoglobulin replacement treatment by rapid subcutaneous infusion. Arch Dis Child. 1998;79:48–51.

    Article  PubMed  CAS  Google Scholar 

  54. Ballow M, Notarangelo L, Grimbacher B, Cunningham-Rundles C, Stein M, Helbert M, et al. Immunodeficiencies. Clin Exp Immunol. 2009;158 Suppl 1:14–22.

    Article  PubMed  CAS  Google Scholar 

  55. Misbah S, Sturzenegger MH, Borte M, Shapiro RS, Wasserman RL, Berger M, et al. Subcutaneous immunoglobulin: opportunities and outlook. Clin Exp Immunol. 2009;158 Suppl 1:51–9.

    Article  PubMed  CAS  Google Scholar 

  56. European Society for Immunodeficiencies. Additional Statistics. http://www.esid.org/registry-additional-statistics. Accessed 6/4/2012.

  57. Thépot S, Malphettes M, Gardeur A, et al. Immunoglobulin dosage and switch from intravenous to subcutaneous immunoglobulin replacement therapy in patients with primary hypogammaglobulinemia: decreasing dosage does not alter serum IgG levels. J Clin Immunol. 2010;30(4):602–6.

    Article  PubMed  Google Scholar 

  58. EMA. Note for guidance on the investigation of normal human immunoglobulin for subcutaneous and intramuscular use. CPMP/BPWG/283/00. 2002. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/10/WC500004255.pdf. Accessed 6/1/2012.

  59. Orange JS, Belohradsky BH, Berger M, Borte M, Hagan S, Jolles RL, et al. Evaluation of correlation between dose and clinical outcomes in subcutaneous immunoglobulin replacement therapy. Clin Exp Immunol. 2012. doi:10.1111/j.1365-2249.2012.04594.x.

  60. Berger M. Subcutaneous Administration of IgG. Immunol Allergy Clin N Am. 2008;28:779–802.

    Article  Google Scholar 

  61. Gardulf A, Bjorvell H, Andersen V, et al. Lifelong treatment with gammaglobulin for primary antibody deficiencies: The patients’ experiences of subcutaneous self-infusions and home therapy. J Adv Nurs. 1995;21:917–27.

    Article  PubMed  CAS  Google Scholar 

  62. Roifman CM, Schroeder H, Berger M. Comparison of the efficacy of IGIV-C, 10% (caprylate/chromatography) and IGIV-SD, 10% as replacement therapy in primary immune deficiency. A randomized double-blind trial. Int Immunopharmacol. 2003;3(9):1325–33.

    Article  PubMed  CAS  Google Scholar 

  63. Shapiro R. Subcutaneous immunoglobulin therapy by rapid push is preferred to infusion by pump: a retrospective analysis. J Clin Immunol. 2010;30(2):301–7.

    Article  PubMed  CAS  Google Scholar 

  64. Food and Drug Administration. Summary Basis for approval Vivaglobin. http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/FractionatedPlasmaProducts/ucm070585.pdf. Accessed 6/1/2012.

  65. Long S, Prober CG, Pickering LK. Principles and Practice of Pediatric Infectious Diseases; 4th ed. 2012. Philadelphia, PA: Churchill Livingstone: An Imprint of Elsevier. ISBN-10: 0443066876.

  66. Bonilla F. IgG replacement therapy, no size fits all. Clin Immunol. 2011;139:107–9.

    Article  PubMed  CAS  Google Scholar 

  67. Wasserman RL, Melamed I, Kobrynski L, Strausbaugh SD, Stein MR, Sharkhawy M, et al. Efficacy, safety, and pharmacokinetics of a 10% liquid immune globulin preparation (GAMMAGARD LIQUID, 10%) administered subcutaneously in subjects with primary immunodeficiency disease. J Clin Immunol. 2011;31(3):323–31.

    Article  PubMed  CAS  Google Scholar 

  68. Wasserman RL, Melamed I, Nelson RP, Knutsen AP, Fasano MB, Stein MR, et al. Pharmacokinetics of Subcutaneous IgPro20 in patients with primary immunodeficiency. Clin Pharmacokinet. 2011;50(6):405–14.

    Article  PubMed  CAS  Google Scholar 

  69. Wasserman RL. Common infusion-related reactions to subcutaneous immunoglobulin therapy: managing patient expectations. Patient Prefer Adher. 2008;2:163–6.

    Google Scholar 

  70. Berger M, Rojavin M, Kiessling P, et al. Pharmacokinetics of subcutaneous immunoglobulin and their use in dosing of replacement therapy in patients with primary immunodeficiencies. Clin Immunol. 2011;139(2):133–41.

    Article  PubMed  CAS  Google Scholar 

  71. von Behring E. The founder of serum therapy. Nobel Prize lecture 1901. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1901/behring-article.html. Accessed 10/25/2011.

  72. Gardulf A, Nicolay U, Math D, et al. Children and adults with primary antibody deficiencs gain quality of life by subcutaneous IgG self-infusions at home. J Allergy Clin Immunol. 2004;114(4):936–42.

    Article  PubMed  CAS  Google Scholar 

  73. Frost GI. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv. 2007;4(4):427–40.

    Article  PubMed  CAS  Google Scholar 

  74. Duran-Reynals F. The effect of extracts of certain organs from normal and immunized animals on the infecting power of vaccine virus. J Exp Med. 1929;50(3):327–40.

    Article  PubMed  CAS  Google Scholar 

  75. Burket LC, Gyorgy P. Clinical observations on the use of hyaluronidase. Pediatrics. 1949;3(1):56–63.

    PubMed  CAS  Google Scholar 

  76. Csoka AB, Frost GI, Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 2001;20(8):499–508.

    Article  PubMed  CAS  Google Scholar 

  77. Bookbinder LH, Hofer A, Haller MF, et al. A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release. 2006;114:230–41.

    Article  PubMed  CAS  Google Scholar 

  78. Bywaters EGL, Holborow EJ, Keech MK. Reconstitution of the dermal barrier to dye spread after hyaluronidase injection. Br Med J. 1951;2:1178–83.

    Article  PubMed  CAS  Google Scholar 

  79. Knight E, Carne E, Novak B, El-Shanawany T, Williams P, Pickersgill T, et al. Self-administered hyaluronidase-facilitated subcutaneous immunoglobulin home therapy in a patient with primary immunodeficiency. J Clin Pathol. 2010;63:846–7.

    Article  PubMed  Google Scholar 

  80. Wasserman RL, Melamed I, Sein MR, Gupta S, Puck J, Engl W, et al. Recombinant human hyaluronidase-facilitated subcutaneous infusion of human immunoglobulins for primary immunodefieicncy. J Allergy Clin Immunol; 2012 (In Press).

  81. Melamed I, Wasserman R, Stein M, Rubenstein A, Puck J, Gupta S, et al. Long-term safety and pharmacokinetics of facilitated subcutaneous infusion of immune globulin (human) 10% and recombinant human hyaluronidase (IgHy) in a phase 111 extension study in patients with primary immunodeficiency (PI). Clinical Immunology Society Annual Meeting. 2012.

  82. Stein M, Wasserman RL, Melamed I, et al. Tolerability and efficacy of recombinant human hyaluronidase (rHUPH20)-facilitated subcutaneous infusion of immune globulin (human), 10% (IGHy) in patients with primary immunodeficiency disease (PI). American College of Allergy, Asthma & Immunology, Boston, MA Nov 3–8, 2011, Poster #268.

  83. Wasserman RL, Melamed I, Stein, et al. Pharmacokinetics of recombinant human hyaluronidase (rHUPH20)-facilitated subcutaneous infusion of immune globulin (human), 10 % (IGHy) in patients with primary immunodeficiency disease (PI). American College of Allergy, Asthma & Immunology, Boston, MA Nov 3–8, 2011b, Poster #267.

Download references

Acknowledgements

Baxter Healthcare Corporation provided funding for editorial support. Dr. Wasserman received no compensation related to the development of this manuscript, is fully responsible for all content and editorial decisions, and meets criteria for authorship as recommended by the International Committee of Medical Journal Editors. Writing and editorial assistance were provided by Barbara Rinehart, MS, of ReSearch Pharmaceutical Services, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Wasserman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserman, R.L. Progress in Gammaglobulin Therapy for Immunodeficiency: From Subcutaneous to Intravenous Infusions and Back Again. J Clin Immunol 32, 1153–1164 (2012). https://doi.org/10.1007/s10875-012-9740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9740-x

Keywords

Navigation