Skip to main content

Advertisement

Log in

Matrix Metalloproteinases: A Review of Their Structure and Role in Systemic Sclerosis

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are the main enzymes involved in arterial wall extracellular matrix (ECM) degradation and remodeling, whose activity has been involved in various normal and pathologic processes, such as inflammation, fibrosis. As a result, the MMPs have come to consider as both therapeutic targets and diagnostic tools for the treatment and diagnosis of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Systemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by an excessive over-production of collagen and other ECM, resulting in skin thickening and fibrosis of internal organs. In recent years, abnormal expression of MMPs has been demonstrated with the pathogenesis of SSc, and the association of different polymorphisms on MMPs genes with SSc has been extensively studied. This review describes the structure, function and regulation of MMPs and shortly summarizes current understanding on experimental findings, genetic associations of MMPs in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gilliam AC. Scleroderma. Curr Dir Autoimmun. 2008;10:258–79.

    Article  PubMed  CAS  Google Scholar 

  2. Randone SB, Guiducci S, Cerinic MM. Systemic sclerosis and infections. Autoimmun Rev. 2008;8:36–40.

    Article  PubMed  Google Scholar 

  3. LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vivo. J Clin Invest. 1974;54:880–9.

    Article  PubMed  CAS  Google Scholar 

  4. Uitto J, Bauer EA, Eisen AZ. Scleroderma: increased biosynthesis of triple-helical type I and type III procollagens associated with unaltered expression of collagenase by skin fibroblasts. J Clin Invest. 1979;64:921–30.

    Article  PubMed  CAS  Google Scholar 

  5. Peltonen J, Kahari L, Uitto J, Jimenez SA. Increased expression of type VI collagen genes in systemic sclerosis. Arthritis Rheum. 1990;33:1829–35.

    Article  PubMed  CAS  Google Scholar 

  6. Kuroda K, Shinkai H. Gene expression of types I and III collagen, decorin, matrix metalloproteinases and tissue inhibitors of metallopro-teinases in skin fibroblasts from patients with systemic sclerosis. Arch Dermatol Res. 1997;289:567–72.

    Article  PubMed  CAS  Google Scholar 

  7. Fleischmajer R, Perlish JS, Krieg T, Trimpl R. Variability in collagen and fibronectin synthesis by scleroderma fibroblasts in primary culture. J Invest Dermatol. 1981;76:400–3.

    Article  PubMed  CAS  Google Scholar 

  8. Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A. Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets. 2009;10:1245–54.

    Article  PubMed  CAS  Google Scholar 

  9. Szarvas T, vom Dorp F, Ergün S, Rübben H, vom Dorp F, Ergün S. Matrix metalloproteinases and their clinical relevance in urinary bladder cancer. Nat Rev Urol. 2011;8:241–54.

    Article  PubMed  CAS  Google Scholar 

  10. Amălinei C, Căruntu ID, Giuşcă SE, Bălan RA. Matrix metalloproteinases involvement in pathologic conditions. Rom J Morphol Embryol. 2010;51:215–28.

    PubMed  Google Scholar 

  11. Nagase H, Woessner Jr JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.

    Article  PubMed  CAS  Google Scholar 

  12. Bode W, Maskos K. Structural studies on MMPs and TIMPs. Methods Mol Biol. 2001;151:45–77.

    PubMed  CAS  Google Scholar 

  13. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997;378:151–60.

    PubMed  CAS  Google Scholar 

  14. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.

    Article  PubMed  CAS  Google Scholar 

  15. Gaggar A, Hector A, Bratcher PE, Mall MA, Griese M, Hartl D. The role of matrix metalloproteinases in cystic fibrosis lung disease. Eur Respir J. 2011;38:721–7.

    Article  PubMed  CAS  Google Scholar 

  16. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad and the ugly. Circ Res. 2002;90:251–62.

    PubMed  CAS  Google Scholar 

  17. Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol. 2007;211:19–26.

    Article  PubMed  CAS  Google Scholar 

  18. Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803:3–19.

    Article  PubMed  Google Scholar 

  19. Hozumi A, Nishimura Y, Nishiuma T, Kotani Y, Yokoyama M. Induction of MMP-9 in normal human bronchial epithelial cells by TNF-alpha via NF-kappa B-mediated pathway. Am J Physiol Lung Cell Mol Physiol. 2001;281:L1444–52.

    PubMed  CAS  Google Scholar 

  20. Alper O, Bergmann-Leitner ES, Bennett TA, Hacker NF, Stromberg K, Stetler-Stevenson WG. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J Natl Cancer Inst. 2001;93:1375–84.

    Article  PubMed  CAS  Google Scholar 

  21. Mengshol JA, Vincenti MP, Brinckerhoff CE. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 2001;29:4361–72.

    Article  PubMed  CAS  Google Scholar 

  22. Rouis M. Matrix metalloproteinases: a potential therapeutic target in atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:541–8.

    Article  PubMed  CAS  Google Scholar 

  23. Van Wart HE, Birkeda-Hansenl H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA. 1990;87:5578–82.

    Article  PubMed  Google Scholar 

  24. Beaudeux JL, Giral P, Bruckert E, Foglietti MJ, Chapman MJ. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med. 2004;42:121–31.

    Article  PubMed  CAS  Google Scholar 

  25. Hulboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 1997;3:27–45.

    Article  PubMed  CAS  Google Scholar 

  26. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.

    Article  PubMed  CAS  Google Scholar 

  27. Cruz-Munoz W, Khokha R. The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Crit Rev Clin Lab Sci. 2008;45:291–338.

    Article  PubMed  CAS  Google Scholar 

  28. Jones CB, Sane DC, Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res. 2003;59:812–23.

    Article  PubMed  CAS  Google Scholar 

  29. Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leuk Biol. 2007;82:1375–81.

    Article  Google Scholar 

  30. McGuire JK, Manicorne AM. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19:34–41.

    Article  PubMed  Google Scholar 

  31. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cell. Nature. 1997;385:729–33.

    Article  PubMed  CAS  Google Scholar 

  32. Ito A, Mukaiyama A, Itoh H, Nagase H, Thorgersen IB, Enghild JJ, et al. Degradation of interleukin 1 beta by matrix metalloproteinases. J Biol Chem. 1996;271:14657–60.

    Article  PubMed  CAS  Google Scholar 

  33. Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010;37:11–25.

    Article  PubMed  CAS  Google Scholar 

  34. Uitto J, Kouba D. Cytokine modulation of extracellular matrix gene expression: relevance to fibrotic skin diseases. J Dermatol Sci. 2001;24 Suppl 1:S60–9.

    Google Scholar 

  35. Iimuro Y, Brenner DA. Matrix metalloproteinase gene delivery for liver fibrosis. Pharm Res. 2008;25:249–58.

    Article  PubMed  CAS  Google Scholar 

  36. Betsuyaku T, Fukuda Y, Parks WC, Shipley JM, Senior RM. Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. Am J Pathol. 2000;157:525–35.

    Article  PubMed  CAS  Google Scholar 

  37. Vaillant B, Chiaramonte MG, Cheever AW, Soloway PD, Wynn TA. Regulation of hepatic fibrosis and extracellular matrix genes by the Th response: new insight into the role of tissue inhibitors of matrix metalloproteinases. J Immunol. 2001;167:7017–26.

    PubMed  CAS  Google Scholar 

  38. Pardo A, Ruiz V, Arreola JL, Ramirez R, Cisneros-Lira J, Gaxiola M, et al. Bleomycin-induced pulmonary fibrosis is attenuated in gamma-glutamyl transpeptidase-deficient mice. Am J Respir Crit Care Med. 2003;167:925–32.

    Article  PubMed  Google Scholar 

  39. Ruiz V, Ordóñez RM, Berumen J, Ramírez R, Uhal B, Becerril C, et al. Unbalanced collagenases/TIMP-1 expression and epithelial apoptosis in experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2003;285:L1026–36.

    PubMed  CAS  Google Scholar 

  40. Selman M, Ruiz V, Cabrera S, Segura L, Ramírez R, Barrios R, et al. TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol. 2000;279:L562–74.

    PubMed  CAS  Google Scholar 

  41. Asano Y, Ihn H, Kubo M, Jinnin M, Mimura Y, Ashida R, et al. Clinical significance of serum levels of matrix metalloproteinase-13 in patients with systemic sclerosis. Rheumatology (Oxford). 2006;45:303–7.

    Article  CAS  Google Scholar 

  42. Kim WU, Min SY, Cho ML, Hong KH, Shin YJ, Park SH, et al. Elevated matrix metalloproteinase-9 in patients with systemic sclerosis. Arthritis Res Ther. 2005;7:R71–9.

    Article  PubMed  CAS  Google Scholar 

  43. Andersen GN, Nilsson K, Pourazar J, Hackett TL, Kazzam E, Blomberg A, et al. Bronchoalveolar matrix metalloproteinase 9 relates to restrictive lung function impairment in systemic sclerosis. Respir Med. 2007;101:2199–206.

    Article  PubMed  Google Scholar 

  44. Moinzadeh P, Krieg T, Hellmich M, Brinckmann J, Neumann E, Müller-Ladner U, et al. Elevated MMP-7 levels in patients with systemic sclerosis: correlation with pulmonary involvement. Exp Dermatol. 2011;20:770–3.

    Article  PubMed  CAS  Google Scholar 

  45. Manetti M, Guiducci S, Romano E, Bellando-Randone S, Conforti ML, Ibba-Manneschi L, et al. Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann Rheum Dis. 2012;71:1064–72.

    Article  PubMed  CAS  Google Scholar 

  46. Kikuchi K, Kubo M, Hoashi T, Tamaki K. Decreased MMP-9 activity in the serum of patients with diffuse cutaneous systemic sclerosis. Clin Exp Dermatol. 2002;27:301–5.

    Article  PubMed  CAS  Google Scholar 

  47. Marasini B, Casari S, Zeni S, Turri O, Biondi ML. Stromelysin promoter polymorphism is associated with systemic sclerosis. Rheumatology (Oxford). 2001;40:475–6.

    Article  CAS  Google Scholar 

  48. Manetti M, Ibba-Manneschi L, Fatini C, Guiducci S, Cuomo G, Bonino C, et al. Association of a functional polymorphism in the matrix metalloproteinase-12 promoter region with systemic sclerosis in an Italian population. J Rheumatol. 2010;37:1852–7.

    Article  PubMed  CAS  Google Scholar 

  49. Wipff J, Dieude P, Avouac J, Tiev K, Hachulla E, Cracowski JL, et al. Association of metalloproteinase gene polymorphisms with systemic sclerosis in the European Caucasian population. J Rheumatol. 2010;37:599–602.

    Article  PubMed  Google Scholar 

  50. Skarmoutsou E, D’Amico F, Marchini M, Stivala F, Malaponte G, Scorza R, et al. Analysis of matrix metalloproteinase-9 gene polymorphism -1562 C/T in patients suffering from systemic sclerosis with and without ulcers. Int J Mol Med. 2011;27:873–7.

    Article  PubMed  CAS  Google Scholar 

  51. Johnson RW, Reveille JD, McNearney T, Fischbach M, Friedman AW, Ahn C, et al. Lack of association of a functionally relevant single nucleotide polymorphism of matrix metalloproteinase-1 promoter with systemic sclerosis (scleroderma). Genes Immun. 2001;2:273–5.

    Article  PubMed  CAS  Google Scholar 

  52. Joung CI, Na YI, Shin ES, Sung YK, Yoo DH, Jun JB. The single nucleotide polymorphisms of matrix metalloproteinase-1 in patients with systemic sclerosis. Rheumatol Int. 2008;28:1183–5.

    Article  PubMed  Google Scholar 

  53. Indelicato M, Chiarenza V, Libra M, Malaponte G, Bevelacqua V, Marchini M, et al. Analysis of TIMP-1 gene polymorphisms in Italian sclerodermic patients. J Clin Lab Anal. 2006;20:173–6.

    Article  PubMed  CAS  Google Scholar 

  54. Sato S, Hayakawa I, Hasegawa M, Fujimoto M, Takehara K. Function blocking autoantibodies against matrix metalloproteinase-1 in patients with systemic sclerosis. J Invest Dermatol. 2003;120:542–7.

    Article  PubMed  CAS  Google Scholar 

  55. Nishijima C, Hayakawa I, Matsushita T, Komura K, Hasegawa M, Takehara K, et al. Autoantibody against matrix metalloproteinase-3 in patients with systemic sclerosis. Clin Exp Immunol. 2004;138:357–63.

    Article  PubMed  CAS  Google Scholar 

  56. Serratì S, Cinelli M, Margheri F, Guiducci S, Del Rosso A, Pucci M, et al. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J Pathol. 2006;210:240–8.

    Article  PubMed  Google Scholar 

  57. D’Alessio S, Fibbi G, Cinelli M, Guiducci S, Del Rosso A, Margheri F, et al. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004;50:3275–85.

    Article  PubMed  Google Scholar 

  58. Margheri F, Manetti M, Serratì S, Nosi D, Pucci M, Matucci-Cerinic M, et al. Domain 1 of the urokinase-type plasminogen activator receptor is required for its morphologic and functional, beta2 integrin-mediated connection with actin cytoskeleton in human microvascular endothelial cells: failure of association in systemic sclerosis endothelial cells. Arthritis Rheum. 2006;54:3926–38.

    Article  PubMed  CAS  Google Scholar 

  59. Au K, Khanna D, Clements PJ, Furst DE, Tashkin DP. Current concepts in disease-modifying therapy for systemic sclerosis-associated interstitial lung disease: lessons from clinical trials. Curr Rheumatol Rep. 2009;11:111–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Academic Leader Foundation of Anhui Medical University and the Key Project of the Education Department of Anhui Province Natural Science Research (Code: KJ2012A165).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

Wen-jia Peng and Jun-wei Yan contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Wj., Yan, Jw., Wan, Yn. et al. Matrix Metalloproteinases: A Review of Their Structure and Role in Systemic Sclerosis. J Clin Immunol 32, 1409–1414 (2012). https://doi.org/10.1007/s10875-012-9735-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9735-7

Keywords

Navigation