Skip to main content
Log in

Knockdown of Core 1 Beta 1, 3-galactosyltransferase Prolongs Skin Allograft Survival with Induction of Galectin-1 Secretion and Suppression of CD8+T Cells

T synthase knockdown effects on galectin-1 and CD8+T cells

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Core 1 beta 1,3-galactosyltransferase also known as T-antigen-synthase or T-synthase is a key enzyme for the synthesis of the common core 1 O-glycan structure (T-antigen). Although T-synthase is known to be important in human immune-related diseases, the effects of T-synthase and T-antigen on host immune responses remain poorly defined. In this study, a T-synthase-specific short hairpin RNA (shRNA) was transfected into murine colon carcinoma CT26 cells or mouse muscle tissues via intramuscular electroporation to assess the effects of T-synthase on T cells and cytokines. T-synthase knockdown significantly induced galectin-1 secretion both in vivo and in vitro and strongly enhanced Th2 cytokine (IL-10 and IL-4) production in vivo. Further, the increased production of galectin-1 induced by T-synthase knockdown promoted CD8+ T-cell apoptosis, which, when combined with the increased production of CD4+ T cell-derived Th2 cytokines prolonged the survival of skin allografts in mice. Our data suggest core 1 beta 1,3-galactosyltransferase-shRNA could serve not only as a useful tool in organ transplantation but also as a powerful tool for investigating O-glycans and glycoprotein synthesis and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

shRNA:

Short hairpin RNA

T synthase or C1GalT:

Core 1 beta 1, 3-galactosyltransferase

CsA:

Cyclosporin A

T-antigen:

Thomsen-Friedenreich antigen

MTT:

3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

FCM:

Flow Cytometry

PNA:

Peanut agglutinin

PI:

Propidium iodide

CFSE:

Carboxyfluorescein succinimidyl ester

ECL:

Enhanced chemiluminescence

ELISA:

Antigen-capture enzyme-linked immunosorbent assay

References

  1. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351:2715–29.

    Article  PubMed  CAS  Google Scholar 

  2. Starzl TE, Murase N, Abu-Elmagd K, Gray EA, Shapiro R, Eghtesad B, et al. Tolerogenic immunosuppression for organ transplantation. Lancet. 2003;361:1502–10.

    Article  PubMed  Google Scholar 

  3. Nielsen FT, Ottosen P, Starklint H, Dieperink H. Kidney function and morphology after short-term combination therapy with cyclosporine A, tacrolimus and sirolimus in the rat. Nephrol Dial Transplant. 2003;18:491–6.

    Article  PubMed  CAS  Google Scholar 

  4. Peter-Katalinic J. Methods in enzymology: O-glycosylation of proteins. Methods Enzymol. 2005;405:139–71.

    Article  PubMed  CAS  Google Scholar 

  5. Ju T, Brewer K, D’Souza A, Cummings RD, Canfield WM. Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem. 2002;277:178–86.

    Article  PubMed  CAS  Google Scholar 

  6. Ju T, Cummings RD, Canfield WM. Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J Biol Chem. 2002;277:169–77.

    Article  PubMed  CAS  Google Scholar 

  7. Ju T, Aryal RP, Stowell CJ, Cummings RD. Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol. 2008;182:531–42.

    Article  PubMed  CAS  Google Scholar 

  8. Itzkowitz SH, Bloom EJ, Lau TS, Kim YS. Mucin associated Tn and sialosyl-Tn antigen expression in colorectal polyps. Gut. 1992;33:518–23.

    Article  PubMed  CAS  Google Scholar 

  9. Conze T, Carvalho AS, Landegren U, Almeida R, Reis CA, David L, et al. MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas. Glycobiology. 2010;20:199–206.

    Article  PubMed  CAS  Google Scholar 

  10. Freire T, Bay S, von Mensdorff-Pouilly S, Osinaga E. Molecular basis of incomplete O-glycan synthesis in MCF-7 breast cancer cells: putative role of MUC6 in Tn antigen expression. Cancer Res. 2005;65:7880–7.

    PubMed  CAS  Google Scholar 

  11. Julian BA, Novak J. IgA nephropathy: an update. Curr Opin Nephrol Hypertens. 2004;13:171–9.

    Article  PubMed  CAS  Google Scholar 

  12. Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, et al. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol. 2004;164:451–9.

    Article  PubMed  CAS  Google Scholar 

  13. Xia L, McEver RP. Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase (T-synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol. 2006;416:314–31.

    Article  PubMed  CAS  Google Scholar 

  14. Van Dyken SJ, Green RS, Marth JD. Structural and mechanistic features of protein O glycosylation linked to CD8+ T-cell apoptosis. Mol Cell Biol. 2007;27:1096–111.

    Article  PubMed  Google Scholar 

  15. Valenzuela HF, Pace KE, Cabrera PV, White R, Porvari K, Kaija H, et al. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res. 2007;67:6155–62.

    Article  PubMed  CAS  Google Scholar 

  16. Mathieu V, Le Mercier M, De Neve N, Sauvage S, Gras T, Roland I, et al. Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. J Invest Dermatol. 2007;127:2399–410.

    Article  PubMed  CAS  Google Scholar 

  17. Liu M, Chen H, Luo F, Li P, Pan Q, Xia B, et al. Deletion of N-glycosylation sites of hepatitis C virus envelope protein E1 enhances specific cellular and humoral immune responses. Vaccine. 2007;25:6572–80.

    Article  PubMed  CAS  Google Scholar 

  18. Ma Y, Chen H, Wang Q, Luo F, Yan J, Zhang XL. IL-24 protects against Salmonella typhimurium infection by stimulating early neutrophil Th1 cytokine production, which in turn activates CD8+ T cells. Eur J Immunol. 2009;39:3357–68.

    Article  PubMed  CAS  Google Scholar 

  19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  20. Lowe JB, Marth JD. A genetic approach to Mammalian glycan function. Annu Rev Biochem. 2003;72:643–91.

    Article  PubMed  CAS  Google Scholar 

  21. Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J, Hernandez JD, et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol. 2007;8:825–34.

    Article  PubMed  CAS  Google Scholar 

  22. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291:2370–6.

    Article  PubMed  CAS  Google Scholar 

  23. Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science. 2001;291:2364–9.

    Article  PubMed  CAS  Google Scholar 

  24. Daniels MA, Hogquist KA, Jameson SC. Sweet ‘n’ sour: the impact of differential glycosylation on T cell responses. Nat Immunol. 2002;3:903–10.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang XL. Roles of glycans and glycopeptides in immune system and immune-related diseases. Curr Med Chem. 2006;13:1141–7.

    Article  PubMed  CAS  Google Scholar 

  26. Brockhausen I. The role of galactosyltransferases in cell surface functions and in the immune system. Drug News Perspect. 2006;19:401–9.

    Article  PubMed  CAS  Google Scholar 

  27. Rabinovich GA, Daly G, Dreja H, Tailor H, Riera CM, Hirabayashi J, et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J Exp Med. 1999;190:385–98.

    Article  PubMed  CAS  Google Scholar 

  28. Santucci L, Fiorucci S, Rubinstein N, Mencarelli A, Palazzetti B, Federici B, et al. Galectin-1 suppresses experimental colitis in mice. Gastroenterology. 2003;124:1381–94.

    Article  PubMed  CAS  Google Scholar 

  29. Motran CC, Molinder KM, Liu SD, Poirier F, Miceli MC. Galectin-1 functions as a Th2 cytokine that selectively induces Th1 apoptosis and promotes Th2 function. Eur J Immunol. 2008;38:3015–27.

    Article  PubMed  CAS  Google Scholar 

  30. de Waal MR, Yssel H, de Vries JE. Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J Immunol. 1993;150:4754–65.

    Google Scholar 

  31. Sembeil R, Sanhadji K, Vivier G, Chargui J, Touraine JL. Prolonged survival of mouse skin allografts after transplantation of fetal liver cells transduced with hIL-10 gene. Transpl Immunol. 2004;13:1–8.

    Article  PubMed  CAS  Google Scholar 

  32. Comelli EM, Sutton-Smith M, Yan Q, Amado M, Panico M, Gilmartin T, et al. Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. J Immunol. 2006;177:2431–40.

    PubMed  CAS  Google Scholar 

  33. Van Dyken SJ, Green S, Marth JD. Structural and mechanistic features of protein O glycosylation linked to CD8+ T-cell apoptosis. Mol Cell Biol. 2007;27:1096–111.

    Article  PubMed  Google Scholar 

  34. Blasko A, Fajka-Boja R, Ion G, Monostori E. How does it act when soluble? Critical evaluation of mechanism of galectin-1 induced T-cell apoptosis. Acta Biologica Hungarica. 2011;62:106–11.

    Article  PubMed  Google Scholar 

  35. Ion G, Fajka-Boja R, Toth GK, Caron M, Monostori E. Role of p56lck and ZAP70-mediated tyrosine phosphorylation in galectin-1-induced cell death. Cell Death Differ. 2005;12:1145–7.

    Article  PubMed  CAS  Google Scholar 

  36. Matarrese P, Tinari A, Mormone E, Bianco GA, Toscano MA, Ascione B, et al. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J Biol Chem. 2005;280:6969–85.

    Article  PubMed  CAS  Google Scholar 

  37. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature. 1995;378:736–9.

    Article  PubMed  CAS  Google Scholar 

  38. Pace KE. Cutting edge: CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell. J Immunol. 2000;165:2331–4.

    PubMed  CAS  Google Scholar 

  39. Vespa GN. Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. J Immunol. 1999;162:799–806.

    PubMed  CAS  Google Scholar 

  40. Liu SD. Galectin-1 tunes TCR binding and signal transduction to regulate CD8 burst size. J Immunol. 2009;182:5283–95.

    Article  PubMed  CAS  Google Scholar 

  41. Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol. 2006;176:778–89.

    PubMed  CAS  Google Scholar 

  42. Xu G, Tu W, Xu C. Immunological tolerance induced by galectin-1 in rat allogeneic renal transplantation. Int Immunopharmacol. 2010;10:643–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The plasmid pPCR-hC1GalT was kindly provided by Dr. Narimatsu H and Dr. Ju T.

This work was supported by grants from the National Grand Program on Key Infectious Disease, National Natural Science Foundation of China (30921001, 81000714 and 30800038), and National Outstanding Youth Foundation of China (81025008), the 973 Program of China (2009CB522507), 211 program (303-581045), the program for Innovative Research Team of University, the Science and Technology Program of Wuhan (#201150530141) and DFG Transregio 60.

Competing Interests

The authors have dedared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Lian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HD., Zhou, X., Yu, G. et al. Knockdown of Core 1 Beta 1, 3-galactosyltransferase Prolongs Skin Allograft Survival with Induction of Galectin-1 Secretion and Suppression of CD8+T Cells. J Clin Immunol 32, 820–836 (2012). https://doi.org/10.1007/s10875-012-9653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9653-8

Keywords

Navigation