Skip to main content

Advertisement

Log in

Cytokine Production Is Altered in Monocytes from Children with Hemolytic Uremic Syndrome

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

The interaction of Shiga toxin (Stx) and/or lipopolysaccharide (LPS) with monocytes (Mo) may be central to the pathogenesis of hemolytic uremic syndrome (HUS), providing the cytokines necessary to sensitize endothelial cells to Stx action. We have previously demonstrated phenotypical alterations in Mo from HUS patients, including increased number of CD16+ Mo. Our aim was to investigate cytokine production in Mo from HUS patients.

Methods

We evaluated TNF-α and IL-10 intracellular contents and secretion in the different Mo subsets in mild (HUS 1) and moderate/severe (HUS 2 + 3) patients. As controls, we studied healthy (HC) and infected children (IC). We also studied Mo responsive capacity towards LPS, measuring the modulation of Mo surface molecules and cytokine production.

Results

In basal conditions, the intracellular measurement of TNF-α and IL-10 revealed that the highest number of cytokine-producing Mo was found in HUS 2 + 3 and IC, whereas LPS caused a similar increase in TNF-α and IL-10-producing Mo for all groups. However, when evaluating the release of TNF-α and IL-10, we found a diminished secretion capacity in the entire HUS group and IC compared to HC in basal and LPS conditions. Similarly, a lower Mo response to LPS in HUS 2 + 3 and IC groups was observed when surface markers were studied.

Conclusion

These results indicate that Mo from severe cases of HUS, similar to IC but different to mild HUS cases, present functional changes in Mo subpopulations and abnormal responses to LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev. 1998;11(3):450–79.

    PubMed  CAS  Google Scholar 

  2. Keusch GT, Acheson DW. Thrombotic thrombocytopenic purpura associated with Shiga toxins. Semin Hematol. 1997;34(2):106–16.

    PubMed  CAS  Google Scholar 

  3. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis. 1985;151(5):775–82.

    Article  PubMed  CAS  Google Scholar 

  4. Remuzzi G, Ruggenenti P. The hemolytic uremic syndrome. Kidney Int. 1995;48(1):2–19.

    Article  PubMed  CAS  Google Scholar 

  5. Litalien C, Proulx F, Mariscalco MM, Robitaille P, Turgeon JP, Orrbine E, et al. Circulating inflammatory cytokine levels in hemolytic uremic syndrome. Pediatr Nephrol. 1999;13(9):840–5.

    Article  PubMed  CAS  Google Scholar 

  6. Proulx F, Turgeon JP, Litalien C, Mariscalco MM, Robitaille P, Seidman E. Inflammatory mediators in Escherichia coli O157:H7 hemorrhagic colitis and hemolytic–uremic syndrome. Pediatr Infect Dis J. 1998;17(10):899–904.

    Article  PubMed  CAS  Google Scholar 

  7. Palermo MS, Alves Rosa MF, Van Rooijen N, Isturiz MA. Depletion of liver and splenic macrophages reduces the lethality of Shiga toxin-2 in a mouse model. Clin Exp Immunol. 1999;116(3):462–7.

    Article  PubMed  CAS  Google Scholar 

  8. van Setten PA, Monnens LA, Verstraten RG, van den Heuvel LP, van Hinsbergh VW. Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release. Blood. 1996;88(1):174–83.

    PubMed  Google Scholar 

  9. Harrison LM, van den Hoogen C, van Haaften WC, Tesh VL. Chemokine expression in the monocytic cell line THP-1 in response to purified shiga toxin 1 and/or lipopolysaccharides. Infect Immun. 2005;73(1):403–12.

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez GC, Ramos MV, Gomez SA, Dran GI, Exeni R, Alduncin M, et al. Differential expression of function-related antigens on blood monocytes in children with hemolytic uremic syndrome. J Leukoc Biol. 2005;78(4):853–61.

    Article  PubMed  CAS  Google Scholar 

  11. Ramos MV, Fernandez GC, Patey N, Schierloh P, Exeni R, Grimoldi I, et al. Involvement of the fractalkine pathway in the pathogenesis of childhood hemolytic uremic syndrome. Blood. 2007;109(6):2438–45.

    Article  PubMed  CAS  Google Scholar 

  12. Ziegler-Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, et al. The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol. 1993;23(9):2053–8.

    Article  PubMed  CAS  Google Scholar 

  13. Fernandez GC, Lopez MF, Gomez SA, Ramos MV, Bentancor LV, Fernandez-Brando RJ, et al. Relevance of neutrophils in the murine model of haemolytic uraemic syndrome: mechanisms involved in Shiga toxin type 2-induced neutrophilia. Clin Exp Immunol. 2006;146(1):76–84.

    Article  PubMed  CAS  Google Scholar 

  14. Thomas R, Lipsky PE. Human peripheral blood dendritic cell subsets. Isolation and characterization of precursor and mature antigen-presenting cells. J Immunol. 1994;153(9):4016–28.

    PubMed  CAS  Google Scholar 

  15. Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81(3):584–92.

    Article  PubMed  CAS  Google Scholar 

  16. Nockher WA, Scherberich JE. Expanded CD14+ CD16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis. Infect Immun. 1998;66(6):2782–90.

    PubMed  CAS  Google Scholar 

  17. Fingerle G, Pforte A, Passlick B, Blumenstein M, Strobel M, Ziegler-Heitbrock HW. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood. 1993;82(10):3170–6.

    PubMed  CAS  Google Scholar 

  18. Kawanaka N, Yamamura M, Aita T, Morita Y, Okamoto A, Kawashima M, et al. CD14+, CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum. 2002;46(10):2578–86.

    Article  PubMed  CAS  Google Scholar 

  19. Katayama K, Matsubara T, Fujiwara M, Koga M, Furukawa S. CD14+ CD16+ monocyte subpopulation in Kawasaki disease. Clin Exp Immunol. 2000;121(3):566–70.

    Article  PubMed  CAS  Google Scholar 

  20. Nockher WA, Bergmann L, Scherberich JE. Increased soluble CD14 serum levels and altered CD14 expression of peripheral blood monocytes in HIV-infected patients. Clin Exp Immunol. 1994;98(3):369–74.

    Article  PubMed  CAS  Google Scholar 

  21. Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14lowCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25(12):3418–24.

    Article  PubMed  CAS  Google Scholar 

  22. Scherberich JE. Proinflammatory blood monocytes: main effector and target cells in systemic and renal disease; background and therapeutic implications. Int J Clin Pharmacol Ther. 2003;41(10):459–64.

    PubMed  CAS  Google Scholar 

  23. Fingerle-Rowson G, Angstwurm M, Andreesen R, Ziegler-Heitbrock HW. Selective depletion of CD14+ CD16+ monocytes by glucocorticoid therapy. Clin Exp Immunol. 1998;112(3):501–6.

    Article  PubMed  CAS  Google Scholar 

  24. Skrzeczynska J, Kobylarz K, Hartwich Z, Zembala M, Pryjma J. CD14+ CD16+ monocytes in the course of sepsis in neonates and small children: monitoring and functional studies. Scand J Immunol. 2002;55(6):629–38.

    Article  PubMed  CAS  Google Scholar 

  25. Olikowsky T, Wang ZQ, Dudhane A, Horowitz H, Conti B, Hoffmann MK. Two distinct pathways of human macrophage differentiation are mediated by interferon-gamma and interleukin-10. Immunology. 1997;91(1):104–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kummerle-Deschner JB, Hoffmann MK, Niethammer D, Dannecker GE. Pediatric rheumatology: autoimmune mechanisms and therapeutic strategies. Immunol Today. 1998;19(6):250–3.

    Article  PubMed  CAS  Google Scholar 

  27. Cavaillon JM, Adrie C, Fitting C, Adib-Conquy M. Endotoxin tolerance: is there a clinical relevance? J Endotoxin Res. 2003;9(2):101–7.

    PubMed  CAS  Google Scholar 

  28. Fan H, Cook JA. Molecular mechanisms of endotoxin tolerance. J Endotoxin Res. 2004;10(2):71–84.

    Article  PubMed  CAS  Google Scholar 

  29. Gianantonio CA, Vitacco M, Mendilaharzu F, Gallo GE, Sojo ET. The hemolytic–uremic syndrome. Nephron. 1973;11(2):174–92.

    Article  PubMed  CAS  Google Scholar 

  30. Wang AM, Creasey AA, Ladner MB, Lin LS, Strickler J, Van Arsdell JN, et al. Molecular cloning of the complementary DNA for human tumor necrosis factor. Science. 1985;228(4696):149–54.

    Article  PubMed  CAS  Google Scholar 

  31. Ziegler-Heitbrock HW. Heterogeneity of human blood monocytes: the CD14+ CD16+ subpopulation. Immunol Today. 1996;17(9):424–8.

    Article  PubMed  CAS  Google Scholar 

  32. Grage-Griebenow E, Flad HD, Ernst M. Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol. 2001;69(1):11–20.

    PubMed  CAS  Google Scholar 

  33. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74(7):2527–34.

    PubMed  CAS  Google Scholar 

  34. Tanaka M, Honda J, Imamura Y, Shiraishi K, Tanaka K, Oizumi K. Surface phenotype analysis of CD16+ monocytes from leukapheresis collections for peripheral blood progenitors. Clin Exp Immunol. 1999;116(1):57–61.

    Article  PubMed  CAS  Google Scholar 

  35. Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14+ CD16+ DR++ monocytes are a major source of TNF. J Immunol. 2002;168(7):3536–42.

    PubMed  CAS  Google Scholar 

  36. Frankenberger M, Sternsdorf T, Pechumer H, Pforte A, Ziegler-Heitbrock HW. Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood. 1996;87(1):373–7.

    PubMed  CAS  Google Scholar 

  37. Skrzeczynska-Moncznik J, Bzowska M, Loseke S, Grage-Griebenow E, Zembala M, Pryjma J. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scand J Immunol. 2008;67(2):152–9.

    Article  PubMed  CAS  Google Scholar 

  38. Chen A, Engel P, Tedder TF. Structural requirements regulate endoproteolytic release of the l-selectin (CD62L) adhesion receptor from the cell surface of leukocytes. J Exp Med. 1995;182(2):519–30.

    Article  PubMed  CAS  Google Scholar 

  39. Smalley DM, Ley K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med. 2005;9(2):255–66.

    Article  PubMed  CAS  Google Scholar 

  40. Tedder TF, Steeber DA, Pizcueta P. L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J Exp Med. 1995;181(6):2259–64.

    Article  PubMed  CAS  Google Scholar 

  41. Alves-Rosa F, Vulcano M, Beigier-Bompadre M, Fernandez G, Palermo M, Isturiz MA. Interleukin-1beta induces in vivo tolerance to lipopolysaccharide in mice. Clin Exp Immunol. 2002;128(2):221–8.

    Article  PubMed  CAS  Google Scholar 

  42. Bellmeyer A, Cotton C, Kanteti R, Koutsouris A, Viswanathan VK, Hecht G. Enterohemorrhagic Escherichia coli suppresses inflammatory response to cytokines and its own toxin. Am J Physiol Gastrointest Liver Physiol. 2009;297(3):G576–81.

    Article  PubMed  CAS  Google Scholar 

  43. Kim J, Thanabalasuriar A, Chaworth-Musters T, Fromme JC, Frey EA, Lario PI, et al. The bacterial virulence factor NleA inhibits cellular protein secretion by disrupting mammalian COPII function. Cell Host Microbe. 2007;2(3):160–71.

    Article  PubMed  CAS  Google Scholar 

  44. Thanabalasuriar A, Koutsouris A, Weflen A, Mimee M, Hecht G, Gruenheid S. The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli. Cell Microbiol. 2010;12(1):31–41.

    Article  PubMed  CAS  Google Scholar 

  45. Laiko M, Murtazina R, Malyukova I, Zhu C, Boedeker EC, Gutsal O, et al. Shiga toxin 1 interaction with enterocytes causes apical protein mistargeting through the depletion of intracellular galectin-3. Exp Cell Res. 2010;316(4):657–66.

    Article  PubMed  CAS  Google Scholar 

  46. Zoja C, Buelli S, Morigi M. Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr Nephrol. 2010;25(11):2231–40.

    Article  PubMed  Google Scholar 

  47. Brigotti M, Tazzari PL, Ravanelli E, Carnicelli D, Rocchi L, Arfilli V, et al. Clinical relevance of shiga toxin concentrations in the blood of patients with hemolytic uremic syndrome. Pediatr Infect Dis J. 2011;30(6):486–90.

    PubMed  Google Scholar 

  48. Fernandez GC, Gomez SA, Ramos MV, Bentancor L, Fernandez-Brando RJ, Landoni VI, et al. The functional state of neutrophils correlates with the severity of renal dysfunction in children with hemolytic uremic syndrome. Pediatr Res. 2007;61(1):123–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by Agencia Nacional de Promoción Científica y Tecnológica, CONICET, and Fundación “Alberto J. Roemmers”, Argentina. The authors thank Marta Felippo, Nora Galassi, and Norma Riera for their excellent technical assistance. The authors also thank Fundación de la Hemofilia and Academia Nacional de Medicina for the use of the FACScan flow cytometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela C. Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, G.C., Ramos, M.V., Landoni, V.I. et al. Cytokine Production Is Altered in Monocytes from Children with Hemolytic Uremic Syndrome. J Clin Immunol 32, 622–631 (2012). https://doi.org/10.1007/s10875-011-9646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9646-z

Keywords

Navigation