Skip to main content

Advertisement

Log in

Transgenic Mice that Overexpress Human IL-15 in Enterocytes Recapitulate Both B and T Cell-Mediated Pathologic Manifestations of Celiac Disease

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Celiac disease (CD) is a chronic immune-mediated intestinal inflammatory disorder afflicting genetically susceptible individuals triggered by the consumption of dietary cereals with high gluten content. As with many other organ-specific autoimmune diseases, the dominant tissue-destructive inflammation in CD is T cell-mediated. The proinflammatory cytokine IL-15 that is overexpressed in the intestinal epithelium of CD patients has emerged as a pivotal element that orchestrates intestinal inflammation and T cell-mediated autoimmune tissue destruction. Although no animal model exists that recapitulates the full spectrum of CD pathophysiology, we have previously reported that transgenic mice that overexpress human IL-15 in enterocytes (T3b-hlL-15 Tg) display many of the T cell-mediated pathologic features seen in CD. Extending these observations, we now report that T3b-hlL-15 Tg mice in addition to recapitulating T cell-mediated effects also display autoantibodies including those against tissue transglutaminase 2 and extensive lamina propria plasmacytosis, all of which are characteristic of CD, thereby reflecting the possibility that locally expressed IL-15 drives both T and B cell pathologic effects seen in CD. More importantly, these findings support the validity and utility of T3b-hlL-15 Tg mice as a reasonable model to investigate not only tissue-destructive pathologic processes in CD, but also to explore novel therapeutic modalities for the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CD:

Celiac disease

TG2:

Transglutaminase 2

IL-15:

Interleukin 15

RF:

Rheumatoid factor

References

  1. Kagnoff MF. Celiac disease: pathogenesis of a model immunogenetic disease. J Clin Invest. 2007;117(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  2. Abadie V, Sollid LM, Barreiro LB, Jabri B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol. 2010;29:493–525.

    Article  Google Scholar 

  3. Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology. 1992;102(1):330–54.

    PubMed  CAS  Google Scholar 

  4. Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity. 2004;21(3):367–77.

    Article  PubMed  Google Scholar 

  5. Scott BB, Goodall A, Stephenson P, Jenkins D. Small intestinal plasma cells in coeliac disease. Gut. 1984;25(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  6. Malamut G, El Machhour R, Montcuquet N, Martin-Lanneree S, Dusanter-Fourt I, Verkarre V, et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest. 2010;120(6):2131–43.

    Article  PubMed  CAS  Google Scholar 

  7. Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, et al. Coordinated induction by IL.15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21(3):357–66.

    Article  PubMed  CAS  Google Scholar 

  8. DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature. 2011;471(7337):220–4.

    Article  PubMed  CAS  Google Scholar 

  9. Benahmed M, Meresse B, Arnulf B, Barbe U, Mention JJ, Verkarre V, et al. Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology. 2007;132(3):994–1008.

    Article  PubMed  CAS  Google Scholar 

  10. Yokoyama S, Watanabe N, Sato N, Perera PY, Filkoski L, Tanaka T, et al. Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci USA. 2009;106(37):15849–54.

    Article  PubMed  CAS  Google Scholar 

  11. Ohta N, Hiroi T, Kweon MN, Kinoshita N, Jang MH, Mashimo T, et al. IL-15-dependent activation-induced cell death-resistant Th1 type CD8 alpha beta+NK1.1+ T cells for the development of small intestinal inflammation. J Immunol. 2002;169(1):460–8.

    PubMed  CAS  Google Scholar 

  12. Kweon MN, Yamamoto M, Kajiki M, Takahashi I, Kiyono H. Systemically derived large intestinal CD4(+) Th2 cells play a central role in STAT6-mediated allergic diarrhea. J Clin Invest. 2000;106(2):199–206.

    Article  PubMed  CAS  Google Scholar 

  13. de Kauwe AL, Chen Z, Anderson RP, Keech CL, Price JD, Wijburg O, et al. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J Immunol. 2009;182(12):7440–50.

    Article  PubMed  Google Scholar 

  14. Bobe P, Bonardelle D, Benihoud K, Opolon P, Chelbi-Alix MK. Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood. 2006;108(13):3967–75.

    Article  PubMed  CAS  Google Scholar 

  15. Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol. 2006;176(2):803–10.

    PubMed  CAS  Google Scholar 

  16. Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997;3(7):797–801.

    Article  PubMed  CAS  Google Scholar 

  17. Lerner A, Blank M, Lahat N, Shoenfeld Y. Increased prevalence of autoantibodies in celiac disease. Dig Dis Sci. 1998;43(4):723–6.

    Article  PubMed  CAS  Google Scholar 

  18. Hällgren J, Knutson F, Lavö B, Hällgren R. Increased mucosal synthesis of rheumatoid factor (RF) in coeliac disease. Clin Exp Immunol. 1996;103(1):94–8.

    Article  PubMed  Google Scholar 

  19. Granito A, Muratori P, Cassani F, Pappas G, Muratori L, Agostinelli D, et al. Anti-actin IgA antibodies in severe coeliac disease. Clin Exp Immunol. 2004;137(2):386–92.

    Article  PubMed  CAS  Google Scholar 

  20. Teesalu K, Uibo O, Kalkkinen N, Janmey P, Uibo R. Increased levels of IgA antibodies against desmin in children with coeliac disease. Int Arch Allergy Immunol. 2001;126(2):157–66.

    Article  PubMed  CAS  Google Scholar 

  21. Wood GM, Howdle PD, Trejdosiewicz LK, Losowsky MS. Jejunal plasma cells and in vitro immunoglobulin production in adult coeliac disease. Clin Exp Immunol. 1987;69(1):123–32.

    PubMed  CAS  Google Scholar 

  22. Brandtzaeg P. The changing immunological paradigm in coeliac disease. Immunol Lett. 2006;105(2):127–39.

    Article  PubMed  CAS  Google Scholar 

  23. Black KE, Murray JA, David CS. HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J Immunol. 2002;169(10):5595–600.

    PubMed  CAS  Google Scholar 

  24. Marietta E, Black K, Camilleri M, Krause P, Rogers 3rd RS, David C, et al. A new model for dermatitis herpetiformis that uses HLA-DQ8 transgenic NOD mice. J Clin Invest. 2004;114(8):1090–7.

    PubMed  CAS  Google Scholar 

  25. Salmi TT, Collin P, Jarvinen O, Haimila K, Partanen J, Laurila K, et al. Immunoglobulin A autoantibodies against transglutaminase 2 in the small intestinal mucosa predict forthcoming coeliac disease. Aliment Pharmacol Ther. 2006;24(3):541–52.

    Article  PubMed  CAS  Google Scholar 

  26. Kitamura D, Roes J, Kühn R, Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature. 1991;350(6317):423–6.

    Article  PubMed  CAS  Google Scholar 

  27. Hiroi T, Yanagita M, Ohta N, Sakaue G, Kiyono H. IL-15 and IL-15 receptor selectively regulate differentiation of common mucosal immune system-independent B-1 cells for IgA responses. J Immunol. 2000;165(8):4329–37.

    PubMed  CAS  Google Scholar 

  28. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6(8):595–601.

    Article  PubMed  CAS  Google Scholar 

  29. Perera LP. Interleukin 15: its role in inflammation and immunity. Arch Immunol Ther Exp (Warsz). 2000;48(6):457–64.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grants “Genomic for Agriculture Innovation GMC009” from the Ministry of Agriculture, Forestry and Fisheries of Japan and a Grant-in-Aid for 2009 Multidisciplinary Research Project from MEXT in Japan from the Ministry of Education, Science, Sports, and Culture of Japan, and a grant from the Ministry of Health, Labor and Welfare of Japan awarded to T. Hiroi. L.P. Perera gratefully acknowledges the receipt of an invitational fellowship from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyanage P. Perera or Takachika Hiroi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, S., Takada, K., Hirasawa, M. et al. Transgenic Mice that Overexpress Human IL-15 in Enterocytes Recapitulate Both B and T Cell-Mediated Pathologic Manifestations of Celiac Disease. J Clin Immunol 31, 1038–1044 (2011). https://doi.org/10.1007/s10875-011-9586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9586-7

Keywords

Navigation