Skip to main content

Advertisement

Log in

Altered Phenotype and Functionality of Circulating Immune Cells Characterize Adult Patients with Nonalcoholic Steatohepatitis

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Nonalcoholic steatohepatitis (NASH) is a chronic inflammatory liver disease associated with insulin resistance and its metabolic consequences. Leukocyte mobilization, intrahepatic activation, and an exacerbated production of reactive oxygen species (ROS) and cytokines contribute to the development of NASH. Though alterations in peripheral blood (PB) T cell proportions and functionality remain unidentified, they might play a main role in NASH progression. We have compared the phenotype and Th1/Th2 commitment of peripheral immune cell reservoirs in adult patients and controls as well as the ability of neutrophils and monocytes to handle an ex vivo challenge. Also, we correlated those parameters with the main histological characteristics in NASH. Compared with controls, patients showed increased numbers of CD4+ cells and both CD4+ and CD8+ CD45RO subsets together with a higher frequency of IFN-γ-producing CD4+ and CD8+ T cells. We also found a decreased number of CD4+ and CD8+ CD45RA subsets. The distinctive production of IFN-γ highlights the significance of the observed skewed frequencies of PB T cells. Whereas ROS production by monocytes from NASH patients did not differ from controls, circulating neutrophils displayed a particularly higher phorbol myristate acetate-induced production of ROS. A negative correlation between oxidative burst and fibrosis grade was observed. This study reveals the presence of a characteristic profile of peripheral immune cells in NASH. We also discuss the probable influence of obesity on some of our present findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009;13:9–19.

    PubMed  CAS  Google Scholar 

  2. Vuppalanchi R, Chalasani N. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Hepatology. 2009;49(1):306–17.

    Article  PubMed  Google Scholar 

  3. Zhan YT, An W. Role of liver innate immune cells in nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16(37):4652–60.

    Article  PubMed  CAS  Google Scholar 

  4. Videla L. Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World J Hepatol. 2009;1:72–8.

    Article  PubMed  Google Scholar 

  5. Pascale A, Pais R, Ratziu V. An overview of nonalcoholic steatohepatitis: past, present and future directions. J Gastrointestin Liver Dis. 2010;19(4):415–23.

    PubMed  Google Scholar 

  6. Alberti GMM, Zimmet PM, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23:469–80.

    Article  PubMed  CAS  Google Scholar 

  7. Brunt EM. Pathology of nonalcoholic steatohepatitis. Hepatol Res. 2005;33:68–71.

    Article  PubMed  CAS  Google Scholar 

  8. Brunt EM. Histopathology of non-alcoholic fatty liver disease. Clin Liver Dis. 2005;13(4):533–44.

    Article  Google Scholar 

  9. Adams LA, Sanderson S, Lindor KD, Angulo P. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J Hepatol. 2005;42:132–8.

    Article  PubMed  Google Scholar 

  10. Fassio E, Alvarez E, Dominguez N, Landeira G, Longo C. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology. 2004;40:820–6.

    PubMed  Google Scholar 

  11. Day C, James OFW. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5.

    Article  PubMed  CAS  Google Scholar 

  12. Basaranoglu M, Kayacetin S, Yilmaz N, Kayacetin E, Tarcin O, Sonsuz A. Understanding mechanisms of the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16(18):2223–6.

    Article  PubMed  Google Scholar 

  13. Jasen PML. Nonalcoholic steatohepatitis. J Med. 2004;62:217–24.

    Google Scholar 

  14. Brunt EA, Kleiner DE, Wilson L, Unalp A, Behling CE, Lavine JE, et al. Portal chronic inflammation in nonalcoholic fatty liver disease. Hepatology. 2009;49(3):809–20.

    Article  PubMed  Google Scholar 

  15. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JÁ, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci. 2002;65:166–76.

    Article  PubMed  CAS  Google Scholar 

  16. Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol. 2002;37:56–62.

    Article  PubMed  CAS  Google Scholar 

  17. Abdelmalek MF, Diehl AM. Mechanisms underlying nonalcoholic steatohepatitis. Drug Discov Today Dis Mech. 2006;3(4):479–88.

    Article  Google Scholar 

  18. Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods. 1995;178:89–97.

    Article  PubMed  CAS  Google Scholar 

  19. Morel F, Doussiere JV, Vignais PV. The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem. 1995;201:523–46.

    Article  Google Scholar 

  20. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.

    Article  PubMed  Google Scholar 

  21. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.

    Article  PubMed  CAS  Google Scholar 

  22. World Health Organization (WHO. Preventing and managing the global epidemic of obesity. Report of the World Health Organization Consultation of Obesity. World Health Organ Tech Rep Ser. 2000;894:i–xii. 1–253.

    Google Scholar 

  23. Berard M, Tough DF. Qualitative differences between naïve and memory T cells. Immunology. 2002;106:127–38.

    Article  PubMed  CAS  Google Scholar 

  24. Linton JP, Haynes L, Tsui L, Zhang X, Swain S. From naive to effector – alterations with aging. Immunol Rev. 1997;160:9–18.

    Article  PubMed  CAS  Google Scholar 

  25. Kimmig S, Przybylski GK, Schmidt CA, Laurisch K, Mowes B, Radbruch A, et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med. 2002;195(6):789–94.

    Article  PubMed  CAS  Google Scholar 

  26. Richards SJ, Jones RA, Roberts BE, Patel D, Scott CS. Relationships between 2H4 (CD45RA) and UCHLl (CD45RO) expression by normal blood CD4+ CD8, CD4 CD8+, CD4 CD8dim+, CD3+ CD4CD8 and CD3 CD4CD8 lymphocytes. Clin Exp Immunol. 1990;81:149–55.

    Article  PubMed  CAS  Google Scholar 

  27. Li QF, Li YP, Cheng PS. Peripheral T-lymphocyte subsets changes in patients with endocrine and metabolic diseases. Zhonghua Nei Ke Za Zhi. 1989;28(7):410–2.

    PubMed  CAS  Google Scholar 

  28. Romo EM, Muñoz-Robles JA, Castillo-Rama M, Meneu JC, Moreno-Elola A, Perez-Saborido B, et al. Peripheral blood lymphocyte populations in end-stage liver diseases. J Clin Gastroenterol. 2007;41(7):713–21.

    Article  PubMed  Google Scholar 

  29. Arizcorreta A, Márquez M, Fernández-Gutiérrez C, Guzmán EP, Brun F, Rodríguez-Iglesias M, et al. T cell receptor excision circles (TRECs), CD4+, CD8+ and their CD45RO+ and CD45RA+ subpopulations in hepatitis C virus (HCV)-HIV-co-infected patients during treatment with interferon alpha plus ribavirin: analysis in a population on effective antiretroviral therapy. Clin Exp Immunol. 2006;146:270–7.

    Article  PubMed  CAS  Google Scholar 

  30. Leon MP, Spickett G, Jones DEJ, Bassendine MF. CD4+ T cell subsets defined by isoforms of CD45 in primary biliary cirrhosis. Clin Exp Immunol. 1995;99:233–9.

    Article  PubMed  CAS  Google Scholar 

  31. Tanigawa T, Iso H, Yamagishi K, Muraki I. Association of lymphocyte sub-populations with clustered features of metabolic syndrome in middle-aged Japanese men. Atherosclerosis. 2004;173:295–300.

    Article  PubMed  CAS  Google Scholar 

  32. Yatsuji S, Hashimoto E, Kaneda H, Taniai M, Tokushige K, Shiratori K. Diagnosing autoimmune hepatitis in nonalcoholic fatty liver disease: is the International Autoimmune Hepatitis Group scoring system useful? J Gastroenterol. 2005;40:1130–8.

    Article  PubMed  Google Scholar 

  33. Bertola A, Bonnafous S, Anty R, Patoraux S, Saint-Pauk MC, Iannelli A, et al. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One. 2010;5(10):e13577.

    Article  PubMed  Google Scholar 

  34. Smith SR, Calzetta A, Bankowski J, Kenworthy-Bott L, Terminelli C. Lipopolysaccharide-induced cytokine production and mortality in mice treated with Corynebacterium parvum. J leukocyte Biology. 1993;54:23–9.

    CAS  Google Scholar 

  35. Maher J, Leon P, Ryan J. Beyond insulin resistance: Innate immunity in nonalcoholic steatohepatitis. Hepatology. 2008;48:670–8.

    Article  PubMed  CAS  Google Scholar 

  36. Guebre-Xabier M, Yang S, Lin HZ, Schwenk R, Krzych U, Diehl AM. Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage. Hepatology. 2000;31:633–40.

    Article  PubMed  CAS  Google Scholar 

  37. Wu H, Ghosh S, Perrad XD, Feng L, Garcia GE, Perrad JL, et al. T-Cell accumulation and regulated on activation. normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115:1029–38.

    Article  PubMed  CAS  Google Scholar 

  38. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1304–10.

    Article  PubMed  CAS  Google Scholar 

  39. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  PubMed  CAS  Google Scholar 

  40. McGillicuddy FC, Chiquoine EH, Hinkle CC, Kim RJ, Shah R, Roche HM, et al. Interferon γ attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J Biol Chem. 2009;284(46):31936–44.

    Article  PubMed  CAS  Google Scholar 

  41. Rensen SS, Slaats Y, Driessen A, Peutz-Kootstra CJ, Nijhuis J, Steffensen R, et al. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology. 2009;50(6):1809–17.

    Article  PubMed  CAS  Google Scholar 

  42. Leclerq LA. Antioxidant defence mechanisms: new players in the pathogenesis of non-alcoholic steatohepatitis? Clin Sci. 2004;106:235–7.

    Article  Google Scholar 

  43. Lefkowitch JH, Haythe JH, Regent N. Kupffer cell aggregation and perivenular distribution in steatohepatitis. Mod Pathol. 2002;15:699–704.

    Article  PubMed  Google Scholar 

  44. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–52.

    Article  PubMed  CAS  Google Scholar 

  45. Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, Bergseth G, et al. Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood. 2002;100:1869–77.

    PubMed  CAS  Google Scholar 

  46. Jaeschke H, Smith CV, Clemens MG, Ganey PE, Roth RA. Mechanisms of inflammatory liver injury: adhesion molecules and cytotoxicity of neutrophils. Toxicol Appl Pharmacol. 1996;139:213–26.

    Article  PubMed  CAS  Google Scholar 

  47. Poniachik J, Csendes A, Díaz JC, Rojas J, Burdiles P, Maluenda F, et al. Increased production of IL-1alpha and TNF-alpha in lipopolysaccharide-stimulated blood from obese patients with non-alcoholic fatty liver disease. Cytokine. 2006;33(5):252–7.

    Article  PubMed  CAS  Google Scholar 

  48. Nieto N, Friedman SL, Cederbaum AI. Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. Hepatology. 2002;35(1):62–73.

    Article  PubMed  CAS  Google Scholar 

  49. Panasiuk A, Wysocka J, Maciorkowska E, Panasiuk B, Prokopowicz D, Zak J, et al. Phagocytic and oxidative burst activity of neutrophils in the end stage of liver cirrhosis. World J Gastroenterol. 2005;11(48):7661–5.

    PubMed  CAS  Google Scholar 

  50. Harte AL, da Silva NF, Creely SJ, McGee KC, Billyard T, Youssef-Elabd EM, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm. 2010;7(15):201.

    Google Scholar 

Download references

Acknowledgments

We wish to thank the patients for their cooperation. We also thank Dr. A.E. Feldstein for proofreading our manuscript.

Source of Funding

This work was supported by the Buenos Aires University (UBACyT M010); CONICET (PIP 6104), and A.N.P.C.y T (06–257). The funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Claudia Cherñavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inzaugarat, M.E., Ferreyra Solari, N.E., Billordo, L.A. et al. Altered Phenotype and Functionality of Circulating Immune Cells Characterize Adult Patients with Nonalcoholic Steatohepatitis. J Clin Immunol 31, 1120–1130 (2011). https://doi.org/10.1007/s10875-011-9571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9571-1

Keywords

Navigation