Skip to main content

Advertisement

Log in

Resistance to Exogenous TGF-β Effects in Patients with Systemic Lupus Erythematosus

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

The mechanisms underlying the loss of self-tolerance in systemic lupus erythematosus (SLE) are incompletely deciphered. TGF-β plays a key role in self-tolerance demonstrated by the onset of a fatal autoimmune syndrome associated with lupus autoantibodies in mice lacking a functional TGF-β receptor. The present work aims to define whether resistance to TGF-β might contribute to the pathogenesis of SLE.

Methods

Twenty-two patients with active SLE, 16 with other connective tissue diseases, and 10 healthy controls were prospectively included in this study. The effects of exogenous TGF-β1 on IL-2-dependent T-cell proliferation, IFN-γ secretion, and target gene transcription were analyzed on peripheral blood mononuclear cells.

Results

Our results showed that 75% of patients with SLE or other connective tissue diseases were totally or partially resistant to the effects of TGF-β1. The responses to the anti-proliferative and transcriptional effects of TGF-β were, however, discordant in a high proportion of our patients. Hence, we distinguish three distinct profiles of resistance to TGF-β1 and suggest that patients may exhibit different defects affecting distinct points of TGF-β1 signaling pathways.

Conclusion

Our data demonstrate the presence of an impaired response of peripheral cells to TGF-β1 in patients with active SLE that may participate to the pathogenesis of the disease. Further studies will be necessary to delineate the mechanisms underlying the lymphocyte resistance to TGF-β1 in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klinman DM, Shirai A, Ishigatsubo Y, Conover J, Steinberg AD. Quantitation of IgM- and IgG-secreting B cells in the peripheral blood of patients with systemic lupus erythematosus. Arthritis Rheum. 1991;34:1404–10.

    Article  PubMed  CAS  Google Scholar 

  2. Liossis SN, Kovacs B, Dennis G, Kammer GM, Tsokos GC. B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest. 1996;98:2549–57.

    Article  PubMed  CAS  Google Scholar 

  3. Yurasov S, Tiller T, Tsuiji M, Velinzon K, Pascual V, Wardemann H, et al. Persistent expression of autoantibodies in SLE patients in remission. J Exp Med. 2006;203:2255–61.

    Article  PubMed  CAS  Google Scholar 

  4. Mandik-Nayak L, Ridge N, Fields M, Park AY, Erikson J. Role of B cells in systemic lupus erythematosus and rheumatoid arthritis. Curr Opin Immunol. 2008;20:639–45.

    Article  PubMed  CAS  Google Scholar 

  5. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.

    Article  PubMed  CAS  Google Scholar 

  6. Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol. 2004;173:6526–31.

    PubMed  CAS  Google Scholar 

  7. Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol. 2008;9:632–40.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang L, Yi H, Xia XP, Zhao Y. Transforming growth factor-beta: an important role in CD4+CD25+ regulatory T cells and immune tolerance. Autoimmunity. 2006;39:269–76.

    Article  PubMed  CAS  Google Scholar 

  9. Horwitz DA, Zheng SG, Wang J, Gray JD. Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3+CD4+ Treg. Eur J Immunol. 2008;38:912–5.

    Article  PubMed  CAS  Google Scholar 

  10. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.

    Article  PubMed  CAS  Google Scholar 

  11. Dang H, Geiser AG, Letterio JJ, Nakabayashi T, Kong L, Fernandes G, et al. SLE-like autoantibodies and Sjögren's syndrome-like lymphoproliferation in TGF-beta knockout mice. J Immunol. 1995;155:3205–12.

    PubMed  CAS  Google Scholar 

  12. Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity. 2000;12:171–81.

    Article  PubMed  CAS  Google Scholar 

  13. Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity. 2006;25:455–71.

    Article  PubMed  CAS  Google Scholar 

  14. Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity. 2006;25:441–54.

    Article  PubMed  CAS  Google Scholar 

  15. Singh RR, Ebling FM, Albuquerque DA, Saxena V, Kumar V, Giannini EH, et al. Induction of autoantibody production is limited in nonautoimmune mice. J Immunol. 2002;169:587–94.

    PubMed  CAS  Google Scholar 

  16. Saxena V, Lienesch DW, Zhou M, Bommireddy R, Azhar M, Doetschman T, et al. Dual roles of immunoregulatory cytokine TGF-beta in the pathogenesis of autoimmunity-mediated organ damage. J Immunol. 2008;180:1903–12.

    PubMed  CAS  Google Scholar 

  17. Ohtsuka K, Gray JD, Stimmler MM, Toro B, Horwitz DA. Decreased production of TGF-beta by lymphocytes from patients with systemic lupus erythematosus. J Immunol. 1998;160:2539–45.

    PubMed  CAS  Google Scholar 

  18. Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001;108:601–9.

    PubMed  CAS  Google Scholar 

  19. Benahmed M, Meresse B, Arnulf B, Barbe U, Mention JJ, Verkarre V, et al. Inhibition of TGF-beta signaling by IL-15: a new role for IL-15 in the loss of immune homeostasis in celiac disease. Gastroenterology. 2007;132:994–1008.

    Article  PubMed  CAS  Google Scholar 

  20. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–7.

    Article  PubMed  CAS  Google Scholar 

  21. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35:630–40.

    Article  PubMed  CAS  Google Scholar 

  22. von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Bottinger EP. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem. 2000;275:11320–6.

    Article  Google Scholar 

  23. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, et al. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986;163:1037–50.

    Article  PubMed  CAS  Google Scholar 

  24. McKarns SC, Schwartz RH, Kaminski NE. Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation. J Immunol. 2004;172:4275–84.

    PubMed  CAS  Google Scholar 

  25. Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev Immunol. 2002;2:46–53.

    Article  PubMed  CAS  Google Scholar 

  26. Alcocer-Varela J, Alarcon-Segovia D. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J Clin Invest. 1982;69:1388–92.

    Article  PubMed  CAS  Google Scholar 

  27. Aoki CA, Borchers AT, Li M, Flavell RA, Bowlus CL, Ansari AA, et al. Transforming growth factor beta (TGF-beta) and autoimmunity. Autoimmun Rev. 2005;4:450–9.

    Article  PubMed  CAS  Google Scholar 

  28. Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 1999;18:1280–91.

    Article  PubMed  CAS  Google Scholar 

  29. Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, et al. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007;26:3957–67.

    Article  PubMed  CAS  Google Scholar 

  30. Aringer M, Stummvoll GH, Steiner G, Koller M, Steiner CW, Hofler E, et al. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology (Oxford). 2001;40:876–81.

    Article  CAS  Google Scholar 

  31. Kohut E, Hadju M, Gergely P, Gopcsa L, Killian K, Paloczi K, et al. Expression of TGF-β1 and its signaling components by peripheral lymphocytes in systemic lupus erythematosus. Pathol Oncol Res. 2009;15:251–6.

    Article  PubMed  CAS  Google Scholar 

  32. Cazac BB, Roes J. TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity. 2000;13:443–51.

    Article  PubMed  CAS  Google Scholar 

  33. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101:890–8.

    Article  PubMed  CAS  Google Scholar 

  34. Rosen A, Casciola-Rosen L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 1999;6:6–12.

    Article  PubMed  CAS  Google Scholar 

  35. Markeljevic J, Marusic M, Uzarevic B, Petrovecki M, Trutin-Ostovic K, Cikes N, et al. T cell subset composition in remission phase of systemic connective tissue diseases. J Clin Lab Immunol. 1991;35:33–9.

    PubMed  CAS  Google Scholar 

  36. Bermas BL, Petri M, Goldman D, Mittleman B, Miller MW, Stocks NI, et al. T helper cell dysfunction in systemic lupus erythematosus (SLE): relation to disease activity. J Clin Immunol. 1994;14:169–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélika Ben Ahmed.

Additional information

Asma Elbeldi-Ferchiou and Mélika Ben Ahmed contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbeldi-Ferchiou, A., Ben Ahmed, M., Smiti-Khanfir, M. et al. Resistance to Exogenous TGF-β Effects in Patients with Systemic Lupus Erythematosus. J Clin Immunol 31, 574–583 (2011). https://doi.org/10.1007/s10875-011-9531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9531-9

Keywords

Navigation