Skip to main content

Advertisement

Log in

Lack of Association between ORAI1/CRACM1 Gene Polymorphisms and Kawasaki Disease in the Taiwanese Children

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Objective

Kawasaki disease (KD) is characterized by systemic vasculitis of an unknown cause. A previous study has indicated that a polymorphism of the inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) gene is involved in the susceptibility to KD. ORAI (also known as CRACM1) is one of the components of store-operated calcium channels involved in regulating immune and inflammatory reactions. This study was conducted to investigate if polymorphisms in ORAI1/CRACM1, a gene downstream from ITPKC, are associated with KD susceptibility and clinical outcomes.

Materials and Methods

A total of 1,056 subjects (341 KD patients and 715 controls) were investigated to identify five tagging single nucleotide polymorphisms (tSNPs) in ORAI1/CRACM1 (rs12313273, rs6486795, rs7135617, rs12320939, and rs712853) by using the TaqMan Allelic Discrimination assay.

Results

No significant associations between genotype and allele frequency of the five ORAI1/CRACM1 tSNPs were observed in the KD patients and controls. In KD patients, no significant associations between ORAI1/CRACM1 polymorphisms and coronary artery lesion (CAL) formation or intravenous immunoglobulin (IVIG) treatment response were observed. The results from haplotype analysis were insignificant.

Conclusions

This study showed for the first time that ORAI1/CRACM1 polymorphisms are not associated with KD susceptibility, CAL formation, or IVIG treatment response in the Taiwanese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

KD:

Kawasaki disease

IVIG:

Intravenous immunoglobulin

CAL:

Coronary artery lesions

CRACM1 :

Calcium release-activated calcium (CRAC) modulator 1

ITPKC :

Inositol 1,4,5-trisphosphate 3-kinase C

References

  1. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics. 1974;54(3):271–6.

    PubMed  CAS  Google Scholar 

  2. Wang CL, Wu YT, Liu CA, Kuo HC, Yang KD. Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J. 2005;24(11):998–1004.

    Article  PubMed  Google Scholar 

  3. Burns JC, Glode MP. Kawasaki syndrome. Lancet. 2004;364(9433):533–44.

    Article  PubMed  Google Scholar 

  4. Park YW, Han JW, Park IS, Kim CH, Cha SH, Ma JS, et al. Kawasaki disease in Korea, 2003–2005. Pediatr Infect Dis J. 2007;26(9):821–3.

    Article  PubMed  Google Scholar 

  5. Huang WC, Huang LM, Chang IS, Chang LY, Chiang BL, Chen PJ, et al. Epidemiologic features of Kawasaki disease in Taiwan, 2003–2006. Pediatrics. 2009;123(3):e401–5.

    Article  PubMed  Google Scholar 

  6. Nakamura Y, Yashiro M, Uehara R, Oki I, Kayaba K, Yanagawa H. Increasing incidence of Kawasaki disease in Japan: nationwide survey. Pediatr Int. 2008;50(3):287–90.

    Article  PubMed  Google Scholar 

  7. Liang CD, Kuo HC, Yang KD, Wang CL, Ko SF. Coronary artery fistula associated with Kawasaki disease. Am Heart J. 2009;157(3):584–8.

    Article  PubMed  Google Scholar 

  8. Kuo HC, Liang CD, Wang CL, Yu HR, Hwang KP, Yang KD. Serum albumin level predicts initial intravenous immunoglobulin treatment failure in Kawasaki disease. Acta Paediatr. 2010;99(10):1578–83.

    Article  PubMed  Google Scholar 

  9. Esper F, Shapiro ED, Weibel C, Ferguson D, Landry ML, Kahn JS. Association between a novel human coronavirus and Kawasaki disease. J Infect Dis. 2005;191(4):499–502.

    Article  PubMed  CAS  Google Scholar 

  10. Chang LY, Chiang BL, Kao CL, Wu MH, Chen PJ, Berkhout B, et al. Lack of association between infection with a novel human coronavirus (HCoV), HCoV-NH, and Kawasaki disease in Taiwan. J Infect Dis. 2006;193(2):283–6.

    Article  PubMed  Google Scholar 

  11. Ebihara T, Endo R, Ma X, Ishiguro N, Kikuta H. Lack of association between New Haven coronavirus and Kawasaki disease. J Infect Dis. 2005;192(2):351–2. author reply 3.

    Article  PubMed  Google Scholar 

  12. Sauer K, Cooke MP. Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nat Rev Immunol. 2010;10(4):257–71.

    Article  PubMed  CAS  Google Scholar 

  13. Onouchi Y, Gunji T, Burns JC, Shimizu C, Newburger JW, Yashiro M, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet. 2008;40(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  14. Shimizu C, Jain S, Lin KO, Molkara D, Frazer JR, Sun S, et al. Transforming growth factor-{beta} signaling pathway in patients with Kawasaki disease. Circ Cardiovasc Genet. 2011;4(1):16–25.

    Article  PubMed  CAS  Google Scholar 

  15. Kuo HC, Yang KD, Liang CD, Bong CN, Yu HR, Wang L, et al. The relationship of eosinophilia to intravenous immunoglobulin treatment failure in Kawasaki disease. Pediatr Allergy Immunol. 2007;18(4):354–9.

    Article  PubMed  Google Scholar 

  16. Kuo HC, Wang CL, Liang CD, Yu HR, Huang CF, Wang L, et al. Association of lower eosinophil-related T helper 2 (Th2) cytokines with coronary artery lesions in Kawasaki disease. Pediatr Allergy Immunol. 2009;20(3):266–72.

    Article  PubMed  Google Scholar 

  17. Chi H, Huang FY, Chen MR, Chiu NC, Lee HC, Lin SP, et al. ITPKC gene SNP rs28493229 and Kawasaki disease in Taiwanese children. Hum Mol Genet. 2010;19(6):1147–51.

    Article  PubMed  CAS  Google Scholar 

  18. Lin MT, Wang JK, Yeh JI, Sun LC, Chen PL, Wu JF, et al. Clinical implication of the C allele of the ITPKC gene SNP rs28493229 in Kawasaki disease: association with disease susceptibility and BCG scar reactivation. Pediatr Infect Dis J. 2011;30(2):148–52.

    Article  PubMed  Google Scholar 

  19. Kuo HC, Yu HR, Juo SH, Yang KD, Wang YS, Liang CD, et al. CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children. J Hum Genet. 2011;56(2):161–5.

    Article  PubMed  CAS  Google Scholar 

  20. Onouchi Y. Identification of susceptibility genes for Kawasaki disease. Nihon Rinsho Meneki Gakkai Kaishi. 2010;33(2):73–80.

    PubMed  CAS  Google Scholar 

  21. Hata A, Onouchi Y. Susceptibility genes for Kawasaki disease: toward implementation of personalized medicine. J Hum Genet. 2009;54(2):67–73.

    Article  PubMed  CAS  Google Scholar 

  22. Calloway N, Vig M, Kinet JP, Holowka D, Baird B. Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell. 2009;20(1):389–99.

    Article  PubMed  CAS  Google Scholar 

  23. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–85.

    Article  PubMed  CAS  Google Scholar 

  24. Kuo HC, Wang CL, Liang CD, Yu HR, Chen HH, Wang L, et al. Persistent monocytosis after intravenous immunoglobulin therapy correlated with the development of coronary artery lesions in patients with Kawasaki disease. J Microbiol Immunol Infect. 2007;40(5):395–400.

    PubMed  Google Scholar 

  25. Shulman ST, De Inocencio J, Hirsch R. Kawasaki disease. Pediatr Clin North Am. 1995;42(5):1205–22.

    PubMed  CAS  Google Scholar 

  26. Yang KD, Chang JC, Chuang H, Liang HM, Kuo HC, Lee YS, et al. Gene–gene and gene–environment interactions on IgE production in prenatal stage. Allergy. 2010;65(6):731–9.

    Article  PubMed  CAS  Google Scholar 

  27. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG. Orai1 is an essential pore subunit of the CRAC channel. Nature. 2006;443(7108):230–3.

    Article  PubMed  CAS  Google Scholar 

  28. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol. 2005;169(3):435–45.

    Article  PubMed  CAS  Google Scholar 

  29. Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell. 2007;131(7):1327–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr. Yoshihiro Onouchi (RIKEN) for reading this manuscript. This study was partly supported by funding from Excellence for Cancer Research Center grant, Department of Health, Executive Yuan, Taiwan, ROC (NO. DOH100-TD-C-111-002); grant from the National Science Council, Taiwan, ROC (NSC 98-2320-B-037-028-MY2 and NSC97-2314-B-182A-054-MY2); grant from the Center of Excellence for Environmental Medicine, Kaohsiung Medical University (KMU-EM-99-6-3); and grant from Chang Gung Memorial Hospital, Taiwan, ROC (CMRPG891441 and CMRPG891241).

Competing interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chiao Chang.

Additional information

Ho-Chang Kuo and Ying-Jui Lin contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, HC., Lin, YJ., Juo, SH.H. et al. Lack of Association between ORAI1/CRACM1 Gene Polymorphisms and Kawasaki Disease in the Taiwanese Children. J Clin Immunol 31, 650–655 (2011). https://doi.org/10.1007/s10875-011-9524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9524-8

Keywords

Navigation