Skip to main content

Advertisement

Log in

Adoptive-Transfer Effects of Intravenous Immunoglobulin in Autoimmunity

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Intravenous immunoglobulin (IVIG) is an effective treatment for a variety of autoimmune and inflammatory conditions. The mechanism of action of IVIG remains poorly understood, but a variety of theories have been suggested. Recent studies in murine models have indicated that some of the ameliorative effects of IVIG in autoimmunity can be repeated by the adoptive transfer of leukocytes that have been primed with IVIG. The active cell component within the leukocyte cell population in immune thrombocytopenia (ITP) was determined to be CD11c+ dendritic cells. This review will highlight recent work in murine systems that indicates that the effects of IVIG can be adoptively transferred in some autoimmune diseases and inflammatory states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imbach P, Barandun S, d'Apuzzo V, Baumgartner C, Hirt A, Morell A, et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet. 1981;317:1228–31.

    Article  Google Scholar 

  2. Salama A, Kiefel V, Amberg R, Mueller-Eckhardt C. Treatment of autoimmune thrombocytopenic purpura with rhesus antibodies (anti-Rh0(D)). Blut. 1984;49:29–35.

    Article  CAS  PubMed  Google Scholar 

  3. Crow AR, Lazarus AH. The mechanisms of action of intravenous immunoglobulin and polyclonal anti-D immunoglobulin in the amelioration of immune thrombocytopenic purpura: what do we really know? Transfus Med Rev. 2008;22:103–16.

    Article  PubMed  Google Scholar 

  4. Park-Min KH, Serbina NV, Yang W, Ma X, Krystal G, Neel BG, et al. FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity. 2007;26:67–78.

    Article  CAS  PubMed  Google Scholar 

  5. Teeling JL, Jansen-Hendriks T, Kuijpers TW, de Haas M, van de Winkel JG, Hack CE, et al. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood. 2001;98:1095–9.

    Article  CAS  PubMed  Google Scholar 

  6. Siragam V, Brinc D, Crow AR, Song S, Freedman J, Lazarus AH. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J Clin Invest. 2005;115:155–60.

    CAS  PubMed  Google Scholar 

  7. Bazin R, Lemieux R, Tremblay T. Reversal of immune thrombocytopenia in mice by cross-linking human immunoglobulin G with a high-affinity monoclonal antibody. Br J Haematol. 2006;135:97–100.

    Article  CAS  PubMed  Google Scholar 

  8. Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH. Intravenous immunoglobulin ameliorates ITP via activating Fcgamma receptors on dendritic cells. Nat Med. 2006;12:688–92.

    Article  CAS  PubMed  Google Scholar 

  9. Marjon KD, Marnell LL, Mold C, Du Clos TW. Macrophages activated by C-reactive protein through Fc gamma RI transfer suppression of immune thrombocytopenia. J Immunol. 2009;182:1397–403.

    CAS  PubMed  Google Scholar 

  10. Aoshi T, Zinselmeyer BH, Konjufca V, Lynch JN, Zhang X, Koide Y, et al. Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity. 2008;29:476–86.

    Article  CAS  PubMed  Google Scholar 

  11. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A. 2008;105:19571–8.

    Article  CAS  PubMed  Google Scholar 

  12. Takeda M, Yamada H, Iwabuchi K, Shimada S, Naito M, Sakuragi N, et al. Administration of high-dose intact immunoglobulin has an anti-resorption effect in a mouse model of reproductive failure. Mol Hum Reprod. 2007;13:807–14.

    Article  CAS  PubMed  Google Scholar 

  13. Bayry J, Lacroix-Desmazes S, Carbonneil C, Misra N, Donkova V, Pashov A, et al. Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood. 2003;101:758–65.

    Article  CAS  PubMed  Google Scholar 

  14. Shioji K, Kishimoto C, Sasayama S. Fc receptor-mediated inhibitory effect of immunoglobulin therapy on autoimmune giant cell myocarditis: concomitant suppression of the expression of dendritic cells. Circ Res. 2001;89:540–6.

    Article  CAS  PubMed  Google Scholar 

  15. Tha-In T, Metselaar HJ, Tilanus HW, Groothuismink ZM, Kuipers EJ, de Man RA, et al. Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells. Blood. 2007;110:3253–62.

    Article  CAS  PubMed  Google Scholar 

  16. Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, et al. Expansion of CD4+ CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood. 2008;111:715–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Andrew R. Crow for his critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Lazarus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarus, A.H. Adoptive-Transfer Effects of Intravenous Immunoglobulin in Autoimmunity. J Clin Immunol 30 (Suppl 1), 20–23 (2010). https://doi.org/10.1007/s10875-010-9410-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9410-9

Keywords

Navigation