Skip to main content

Advertisement

Log in

Mechanisms of IVIG Efficacy in Chronic Inflammatory Demyelinating Polyneuropathy

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common treatable acquired chronic polyneuropathy. Corticosteroids, plasmapheresis and intravenous immunoglobulins (IVIG) have been shown to be effective in randomized controlled clinical trials and IVIG is widely used as a first-line initial and maintenance treatment for CIDP. Studies in animal models of autoimmune diseases indicated that the inhibitory Fc-gamma receptor FcγRIIB, expressed on myeloid cells and B cells, is required for the anti-inflammatory activity of IVIG.

Summary

We found that untreated patients with CIDP, compared to demographically matched healthy controls, show lower FcγRIIB expression levels on naïve B cells and fail to upregulate or to maintain upregulation of FcγRIIB as B cells progress from the naive to the memory compartment. Furthermore, FcγRIIB protein expression is upregulated on B cells and monocytes following clinically effective IVIG therapy suggesting that impaired expression of the inhibitory FcγR in CIDP can, at least partially, be restored by IVIG treatment. In B cells, FcγRIIB transduces an inhibitory signal upon colligation with the B cell receptor, thereby preventing B cells with low affinity or self-reactive receptors from entering the germinal center and becoming IgG positive plasma cells. Our data suggest that this late B cell differentiation checkpoint is impaired in CIDP. Modulating FcγRIIB function might be a promising approach to efficiently limit antibody-mediated immunopathology in CIDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koller H, Kieseier BC, Jander S, Hartung HP. Chronic inflammatory demyelinating polyneuropathy. N Engl J Med. 2005;352:1343–56.

    Article  PubMed  Google Scholar 

  2. Rajabally YA, Simpson BS, Beri S, Bankart J, Gosalakkal JA. Epidemiologic variability of chronic inflammatory demyelinating polyneuropathy with different diagnostic criteria: study of a UK population. Muscle Nerve. 2009;39:432–8.

    Article  PubMed  Google Scholar 

  3. Laughlin RS, Dyck PJ, Melton III LJ, Leibson C, Ransom J, Dyck PJ. Incidence and prevalence of CIDP and the association of diabetes mellitus. Neurology. 2009;73:39–45.

    Article  CAS  PubMed  Google Scholar 

  4. Dyck PJ, Lais AC, Ohta M, Bastron JA, Okazaki H, Groover RV. Chronic inflammatory polyradiculoneuropathy. Mayo Clin Proc. 1975;50:621–37.

    CAS  PubMed  Google Scholar 

  5. Saperstein DS, Katz JS, Amato AA, Barohn RJ. Clinical spectrum of chronic acquired demyelinating polyneuropathies. Muscle Nerve. 2001;24:311–24.

    Article  CAS  PubMed  Google Scholar 

  6. Meyer zu Hörste G, Hartung HP, Kieseier BC. From bench to bedside—experimental rationale for immune-specific therapies in the inflamed peripheral nerve. Nat Clin Pract Neurol. 2007;3:198–211.

    Article  PubMed  Google Scholar 

  7. Kieseier BC, Tani M, Mahad D, Oka N, Ho T, Woodroofe N, et al. Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IP-10. Brain. 2002;125:823–34.

    Article  PubMed  Google Scholar 

  8. Yan WX, Taylor J, Andrias-Kauba S, Pollard JD. Passive transfer of demyelination by serum or IgG from chronic inflammatory demyelinating polyneuropathy patients. Ann Neurol. 2000;47:765–75.

    Article  CAS  PubMed  Google Scholar 

  9. Dalakas MC. Mechanisms of action of IVIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology. 2002;59:S13–21.

    CAS  PubMed  Google Scholar 

  10. Hughes RA, Donofrio P, Bril V, Dalakas MC, Deng C, Hanna K, et al. Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebo-controlled trial. Lancet Neurol. 2008;7:136–44.

    Article  CAS  PubMed  Google Scholar 

  11. Tackenberg B, Lunemann JD, Steinbrecher A, Rothenfusser-Korber E, Sailer M, Bruck W, et al. Classifications and treatment responses in chronic immune-mediated demyelinating polyneuropathy. Neurology. 2007;68:1622–9.

    Article  CAS  PubMed  Google Scholar 

  12. van Doorn PA, Brand A, Strengers PF, Meulstee J, Vermeulen M. High-dose intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy: a double-blind, placebo-controlled, crossover study. Neurology. 1990;40:209–12.

    PubMed  Google Scholar 

  13. Vermeulen M, van Doorn PA, Brand A, Strengers PF, Jennekens FG, Busch HF. Intravenous immunoglobulin treatment in patients with chronic inflammatory demyelinating polyneuropathy: a double blind, placebo controlled study. J Neurol Neurosurg Psychiatry. 1993;56:36–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hahn AF, Bolton CF, Zochodne D, Feasby TE. Intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy. A double-blind, placebo-controlled, cross-over study. Brain. 1996;119:1067–77.

    Article  PubMed  Google Scholar 

  15. Hughes R, Bensa S, Willison H, Van den Bergh P, Comi G, Illa I, et al. Randomized controlled trial of intravenous immunoglobulin versus oral prednisolone in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol. 2001;50:195–201.

    Article  CAS  PubMed  Google Scholar 

  16. Mendell JR, Barohn RJ, Freimer ML, Kissel JT, King W, Nagaraja HN, et al. Randomized controlled trial of IVIg in untreated chronic inflammatory demyelinating polyradiculoneuropathy. Neurology. 2001;56:445–9.

    CAS  PubMed  Google Scholar 

  17. Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282:490–3.

    Article  CAS  PubMed  Google Scholar 

  18. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–25.

    Article  CAS  PubMed  Google Scholar 

  19. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med. 2006;203:789–97.

    Article  CAS  PubMed  Google Scholar 

  20. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science. 2001;291:484–6.

    Article  CAS  PubMed  Google Scholar 

  21. Debre M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P, et al. Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet. 1993;342:945–9.

    Article  CAS  PubMed  Google Scholar 

  22. Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol. 2004;5:981–6.

    Article  CAS  PubMed  Google Scholar 

  23. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science. 2005;310:1510–2.

    Article  CAS  PubMed  Google Scholar 

  24. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.

    Article  CAS  PubMed  Google Scholar 

  25. Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity. 2000;13:277–85.

    Article  CAS  PubMed  Google Scholar 

  26. Pritchard NR, Cutler AJ, Uribe S, Chadban SJ, Morley BJ, Smith KG. Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcgammaRII. Curr Biol. 2000;10:227–30.

    Article  CAS  PubMed  Google Scholar 

  27. Mackay M, Stanevsky A, Wang T, Aranow C, Li M, Koenig S, et al. Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J Exp Med. 2006;203:2157–64.

    Article  CAS  PubMed  Google Scholar 

  28. Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science. 2001;291:484–6.

    Article  CAS  PubMed  Google Scholar 

  29. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity. 2003;18:573–81.

    Article  CAS  PubMed  Google Scholar 

  30. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–3.

    Article  CAS  PubMed  Google Scholar 

  31. Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N, Nimmerjahn F, Lünemann JD. Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci U S A. 2009;106:4788–92.

    Google Scholar 

  32. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    Article  CAS  PubMed  Google Scholar 

  33. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320:373–6.

    Article  CAS  PubMed  Google Scholar 

  34. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med. 1995;1:237–43.

    Article  CAS  PubMed  Google Scholar 

  35. Nimmerjahn F, Anthony RM, Ravetch JV. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A. 2007;104:8433–7.

    Article  CAS  PubMed  Google Scholar 

  36. Rademacher TW, Williams P, Dwek RA. Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc Natl Acad Sci U S A. 1994;91:6123–7.

    Article  CAS  PubMed  Google Scholar 

  37. Mizuochi T, Hamako J, Nose M, Titani K. Structural changes in the oligosaccharide chains of IgG in autoimmune MRL/Mp-lpr/lpr mice. J Immunol. 1990;145:1794–8.

    CAS  PubMed  Google Scholar 

  38. Matsumoto A, Shikata K, Takeuchi F, Kojima N, Mizuochi T. Autoantibody activity of IgG rheumatoid factor increases with decreasing levels of galactosylation and sialylation. J Biochem. 2000;128:621–8.

    CAS  PubMed  Google Scholar 

  39. Bond A, Cooke A, Hay FC. Glycosylation of IgG, immune complexes and IgG subclasses in the MRL-lpr/lpr mouse model of rheumatoid arthritis. Eur J Immunol. 1990;20:2229–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan D. Lünemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tackenberg, B., Nimmerjahn, F. & Lünemann, J.D. Mechanisms of IVIG Efficacy in Chronic Inflammatory Demyelinating Polyneuropathy. J Clin Immunol 30 (Suppl 1), 65–69 (2010). https://doi.org/10.1007/s10875-010-9398-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9398-1

Keywords

Navigation