Skip to main content

Advertisement

Log in

Immunomodulation by Intravenous Immunoglobulin: Role of Regulatory T Cells

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

An altered immune homeostasis as a result of deficiency or defective function of CD4+CD25+FoxP3+ regulatory T cells (Tregs) is common in several autoimmune diseases. Hence, therapeutic strategies to render Tregs functionally competent are being investigated. Intravenous immunoglobulin (IVIG) is being increasingly used for the treatment of a wide range of autoimmune and inflammatory diseases. Recent studies have demonstrated that IVIG induces the expansion of Tregs and enhances their suppressive functions. These effects of IVIG on Tregs correlate with the beneficial effects of IVIG in patients with autoimmune diseases. Thus, modulation of Tregs by IVIG represents a novel mode of action that explains the therapeutic effects of IVIG in T cell-mediated autoimmune diseases. However, the molecular mechanisms involved in IVIG-mediated modulation of Tregs are unclear and need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001;345:747–55.

    Article  CAS  PubMed  Google Scholar 

  2. Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26:513–33.

    Article  CAS  PubMed  Google Scholar 

  3. Gold R, Stangel M, Dalakas MC. Drug insight: the use of intravenous immunoglobulin in neurology—therapeutic considerations and practical issues. Nat Clin Pract Neurol. 2007;3:36–44.

    Article  CAS  PubMed  Google Scholar 

  4. Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol. 2007;3:262–72.

    Article  CAS  PubMed  Google Scholar 

  5. Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008;29:608–15.

    Article  CAS  PubMed  Google Scholar 

  6. Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13:108–16.

    Article  CAS  PubMed  Google Scholar 

  7. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:239–44.

    Article  CAS  PubMed  Google Scholar 

  8. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.

    Article  CAS  PubMed  Google Scholar 

  9. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636–45.

    Article  CAS  PubMed  Google Scholar 

  10. Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol. 2008;29:429–35.

    Article  CAS  PubMed  Google Scholar 

  11. Andre S, Tough DF, Lacroix-Desmazes S, Kaveri SV, Bayry J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am J Pathol. 2009;174:1575–87.

    Article  CAS  PubMed  Google Scholar 

  12. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA. 2008;105:10113–8.

    Article  CAS  PubMed  Google Scholar 

  13. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  CAS  PubMed  Google Scholar 

  14. Friedline RH, Brown DS, Nguyen H, Kornfeld H, Lee J, Zhang Y, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 2009;206:421–34.

    Article  CAS  PubMed  Google Scholar 

  15. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.

    Article  CAS  PubMed  Google Scholar 

  16. Bayry J. Autoimmunity: CTLA-4: a key protein in autoimmunity. Nat Rev Rheumatol. 2009;5:244–5.

    Article  CAS  PubMed  Google Scholar 

  17. Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood. 2008;111:715–22.

    Article  CAS  PubMed  Google Scholar 

  18. De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood. 2008;112:3303–11.

    Article  PubMed  Google Scholar 

  19. Furuno K, Yuge T, Kusuhara K, Takada H, Nishio H, Khajoee V, et al. CD25+CD4+ regulatory T cells in patients with Kawasaki disease. J Pediatr. 2004;145:385–90.

    Article  CAS  PubMed  Google Scholar 

  20. Chi LJ, Wang HB, Zhang Y, Wang WZ. Abnormality of circulating CD4(+)CD25(+) regulatory T cell in patients with Guillain-Barre syndrome. J Neuroimmunol. 2007;192:206–14.

    Article  CAS  PubMed  Google Scholar 

  21. Barreto M, Ferreira RC, Lourenço L, Moraes-Fontes MF, Santos E, Alves M, et al. Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFbeta gene variants. BMC Immunol. 2009;10:5.

    Article  PubMed  Google Scholar 

  22. Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J Immunol. 2007;179:5571–5.

    CAS  PubMed  Google Scholar 

  23. Bayry J, Siberil S, Triebel F, Tough DF, Kaveri SV. Rescuing CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discov Today. 2007;12:548–52.

    Article  CAS  PubMed  Google Scholar 

  24. Caspi RR. Tregitopes switch on Tregs. Blood. 2008;112:3003–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes-Paris 5, Université Pierre et Marie Curie-Paris 6; talents research grant and eSPIN (European Scientific Progress—Immunoglobulins in Neurology) Award 2009 from Talecris Biotherapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srini V. Kaveri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddur, M.S., Othy, S., Hegde, P. et al. Immunomodulation by Intravenous Immunoglobulin: Role of Regulatory T Cells. J Clin Immunol 30 (Suppl 1), 4–8 (2010). https://doi.org/10.1007/s10875-010-9394-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9394-5

Keywords

Navigation