Skip to main content

Advertisement

Log in

Proteolytically Inactive Per a 10 Allergen of Periplaneta americana Modulates Th2 Response and Enhances IL-10 in Mouse Model

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

Purified allergens with reduced IgE reactivity are required to improve the safety and efficacy of allergen-specific immunotherapy (IT).

Objective

The present study investigates the efficacy of purified cockroach allergen immunotherapy with proteolytically active and inactive Per a 10 in allergic mouse model.

Methods

Balb/c mice were sensitized intraperitoneally with cockroach extract (CE) and purified allergen Per a 10 in separate groups. Mice were treated subcutaneously with phosphate-buffered saline (PBS), CE, active and inactive Per a 10 and challenged intranasally. Antigen specific IgE, IgG1 and IgG2a in serum and cytokines IL-4, IL-13, IFN-γ, IL-10, TGF-β in bronchoalveolar lavage (BAL) fluid and spleen culture supernatant (CS) were estimated by enzyme-linked immunosorbent assay. Lung histology was analyzed by hematoxylin and eosin staining.

Results

IT with Per a 10 demonstrated significant reduction in IgE levels in serum, IL-4 levels in BAL fluid, CS, and eosinophilic infiltration in lungs than PBS-treated mice. This was associated with significantly increased IL-10 secretion in BAL fluid and CS. IT with Per a 10 effectively suppressed T-helper type 2 (Th2) response in mice sensitized with Per a 10 than CE group. Further, IT with inactive Per a 10 showed maximum reduction in systemic and airway inflammation and induced maximum IL-10 release in BAL fluid and CS than other antigens.

Conclusions

IT with Per a 10 effectively suppressed Th2 response and lung inflammation in Per a 10- or CE-sensitized mice. The beneficial effects of IT with inactive Per a 10 are more pronounced than active Per a 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SIT:

Specific Immunotherapy

CS:

Spleen culture supernatant

EDTA:

Ethylenediamine tetraceticacid

AEBSF:

Aminoethyl benzenesulfonyl fluoride hydrochloride

PMSF:

Phenylmethylsulfonyl fluoride

BAEE:

N-Benzoyl arginine ethyl ester hydrochloride

CE:

Whole body cockroach extract

w/v :

Weight/volume

SDS:

Sodium dodecyl sulfate

PBS:

Phosphate-buffered saline

ELISA:

Enzyme-linked immunosorbent assay

BAL:

Bronchoalveolar lavage

References

  1. Tatfeng YM, Usuanlele MU, Orukpe A, Digban AK, Okodua M, Oviasogie F, et al. Mechanical transmission of pathogenic organisms: the role of cockroaches. J Vector Borne Dis. 2005;42:129–34.

    CAS  PubMed  Google Scholar 

  2. Kang B, Vellody D, Homburger H, Yunginger JW. Cockroach cause of allergic asthma. Its specificity and immunologic profile. J Allergy Clin Immunol. 1979;63:80–6.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Zhang H, Yang H, Zhang L, Chen X, Zheng X, et al. Induction of T-helper type 2 cytokine release and up-regulated expression of protease-activated receptors on mast cells by recombinant American cockroach allergen Per a 7. Clin Exp Allergy. 2008;38:1160–7.

    Article  CAS  PubMed  Google Scholar 

  4. Sudha VT, Arora N, Sridhara S, Gaur SN, Singh BP. Biopotency and identification of allergenic proteins in Periplaneta americana extract for clinical applications. Biologicals. 2007;35:131–7.

    Article  Google Scholar 

  5. Bhat RK, Page K, Tan A, Hershenson MB. German cockroach extract increases bronchial epithelial cell interleukin-8 expression. Clin Exp Allergy. 2003;33:35–42.

    Article  CAS  PubMed  Google Scholar 

  6. Bateman ED, Jithoo A. Asthma and allergy—a global perspective. Allergy. 2007;62:213–5.

    Article  CAS  PubMed  Google Scholar 

  7. Larche M, Akdis CA, Valenta R. Immunological mechanisms of allergen-specific immunotherapy. Nat Rev Immunol. 2006;6:761–71.

    Article  CAS  PubMed  Google Scholar 

  8. Valenta R. The future of antigen-specific immunotherapy of allergy. Nat Rev Immunol. 2002;2:446–53.

    CAS  PubMed  Google Scholar 

  9. Arvidsson MB, Lowhagen O, Rak S. Allergen specific immunotherapy attenuates early and late phase reactions in lower airways of birch pollen asthmatic patients: a double blind placebo-controlled study. Allergy. 2004;59:74–80.

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Robaina JC, Sanchez I, de la Torre F, Fernandez-Caldas E, Casanovas M. Successful management of mite-allergic asthma with modified extracts of Dermatophagoides pteronyssinus and Dermatophagoides farinae in a double-blind, placebo-controlled study. J Allergy Clin Immunol. 2006;118:1026–32.

    Article  PubMed  Google Scholar 

  11. Abramson MJ, Puy RM, Weiner JM. Is allergen immunotherapy effective in asthma? A meta-analysis of randomized controlled trials. Am J Respir Crit Care Med. 1995;151:969–74.

    CAS  PubMed  Google Scholar 

  12. Barnes PJ. Is immunotherapy for asthma worthwhile? N Engl J Med. 1996;334:531–2.

    Article  CAS  PubMed  Google Scholar 

  13. Valenta R, Twaroch T, Swoboda I. Component-resolved diagnosis to optimize allergen-specific immunotherapy in the Mediterranean area. J Investig Allergol Clin Immunol. 2007;17:36–40.

    PubMed  Google Scholar 

  14. Pittner G, Vrtala S, Thomas WR, Weghofer M, Kundi M, Horak F, et al. Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens. Clin Exp Allergy. 2004;34:597–603.

    Article  CAS  PubMed  Google Scholar 

  15. Bousquet J, Lockey R, Malling HJ. Allergen immunotherapy: therapeutic vaccines for allergic diseases. A WHO position paper. J Allergy Clin Immunol. 1998;102:558–62.

    Article  CAS  PubMed  Google Scholar 

  16. Hiller R, Laffer S, Harwanegg C, Huber M, Schmidt WM, Twardosz A, et al. Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB J. 2002;16:414–6.

    CAS  PubMed  Google Scholar 

  17. Kazemi-Shirazi L, Niederberger V, Linhart B, Lindholm J, Kraft D, Valenta R. Recombinant marker allergens: diagnostic gatekeepers for the treatment of allergy. Int Arch Allergy Immunol. 2002;127:259–68.

    Article  CAS  PubMed  Google Scholar 

  18. Sudha VT, Arora N, Gaur SN, Pasha S, Singh BP. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy. 2008;63:768–76.

    Article  CAS  PubMed  Google Scholar 

  19. Sudha VT, Arora N, Singh BP. Serine protease activity of Per a 10 augments allergen-induced airway inflammation in a mouse model. Eur J Clin Invest. 2009;39:507–16.

    Article  CAS  PubMed  Google Scholar 

  20. Vissers JL, van Esch BC, Hofman GA, Kapsenberg ML, Weller FR, van Oosterhout AJ. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model. J Allergy Clin Immunol. 2004;113:1204–10.

    Article  CAS  PubMed  Google Scholar 

  21. Mehta AK, Gaur SN, Arora N, Singh BP. Effect of choline chloride in allergen-induced mouse model of airway inflammation. Eur Respir J. 2007;30:662–71.

    Article  CAS  PubMed  Google Scholar 

  22. Chapman MD, Vailes LD, Hayden ML, Platts-Mills TAE, Arruda LK. Cockroach allergens and their role in asthma. In: Kay AB, editor. Allergy and allergic diseases. Oxford: Blackwell Science; 1996. p. 942–51.

    Google Scholar 

  23. Alonso A, Albonico JF, Mouchian K, Scavini LM, Iraneta SG, Pionetti CH. Immunological changes during cockroach immunotherapy. J Investig Allergol Clin Immunol. 1999;9:299–304.

    CAS  PubMed  Google Scholar 

  24. Kang BC, Johnson J, Morgan C, Chang JL. The role of immunotherapy in cockroach asthma. J Asthma. 1998;25:205–18.

    Google Scholar 

  25. Takabayashi K, Libet L, Chisholm D, Zubeldia J, Horner AA. Intranasal immunotherapy is more effective than intradermal immunotherapy for the induction of airway allergen tolerance in Th2-sensitized mice. J Immunol. 2003;170:3898–905.

    CAS  PubMed  Google Scholar 

  26. Janssen EM, van Oosterhout AJ, Nijkamp FP, van Eden W, Wauben MH. The efficacy of immunotherapy in an experimental murine model of allergic asthma is related to the strength and site of T cell activation during immunotherapy. J Immunol. 2000;165:7207–14.

    CAS  PubMed  Google Scholar 

  27. Brimnes J, Kildsgaard J, Jacobi H, Lund K. Sublingual immunotherapy reduces allergic symptoms in a mouse model of rhinitis. Clin Exp Allergy. 2007;37:488–97.

    Article  CAS  PubMed  Google Scholar 

  28. Yu HQ, Liu ZG, Yu KY, Xu ZQ, Qiu J. Immunotherapy with recombinant house dust mite group 2 allergen vaccines inhibits allergic airway inflammation in mice. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2006;24:414–9.

    PubMed  Google Scholar 

  29. Neimert-Andersson T, Thunberg S, Swedin L, Wiedermann U, Jacobsson-Ekman G, Dahlen SE, et al. Carbohydrate-based particles reduce allergic inflammation in a mouse model for cat allergy. Allergy. 2008;63:518–26.

    Article  CAS  PubMed  Google Scholar 

  30. Van Oosterhout AJ, Van Esch B, Hofman G, Hofstra CL, Van Ark I, Nijkamp FP, et al. Allergen immunotherapy inhibits airway eosinophilia and hyperresponsiveness associated with decreased IL-4 production by lymphocytes in a murine model of allergic asthma. Am J Respir Cell Mol Biol. 1998;19:622–8.

    PubMed  Google Scholar 

  31. Finkelman FD, Holmes J, Urban Jr JF, Paul WE, Katona IM. T help requirements for the generation of an in vivo IgE response: a late acting form of T cell help other than IL-4 is required for IgE but not for IgG1 production. J Immunol. 1989;142:403–8.

    CAS  PubMed  Google Scholar 

  32. Gough L, Shulz O, Sewell HF, Shakib F. The cysteine protease activity of the major dust mite allergen Der p 1 selectively enhances the immunoglobulin E antibody response. J Exp Med. 1999;190:1897–902.

    Article  CAS  PubMed  Google Scholar 

  33. Papouchado BG, Chapoval SP, Marietta EV, Weiler CR, David CS. Cockroach allergen-induced eosinophilic airway inflammation in HLA-DQ/human CD4 (+) transgenic mice. J Immunol. 2001;167:4627–34.

    CAS  PubMed  Google Scholar 

  34. Finkelman FD, Katona IM, Urban Jr JF, Holmes J, Ohara J, Tung AS, et al. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 1998;141:2335–41.

    Google Scholar 

  35. Ebner C, Siemann U, Bohle B. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative response to allergen and shift from Th2 to Th1 in T cell clones specific for Phl p I, a major grass pollen allergen. Clin Exp Allergy. 1997;27:1007–15.

    Article  CAS  PubMed  Google Scholar 

  36. O’Farrell AM, Liu Y, Moore KW, Mui AL. IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO J. 1998;17:1006–18.

    Article  PubMed  Google Scholar 

  37. Castro AG, Neighbors M, Hurst SD, Zonin F, Silva RA, Murphy E. Anti-interleukin 10 receptor monoclonal antibody is an adjuvant for T helper cell type 1 responses to soluble antigen only in the presence of lipopolysaccharide. J Exp Med. 2000;192:1529–34.

    Article  CAS  PubMed  Google Scholar 

  38. Akdis CA, Blesken T, Akdis M, Wuthrich B, Blaser K. Role of interleukin 10 in specific immunotherapy. J Clin Invest. 1998;102:98–106.

    Article  CAS  PubMed  Google Scholar 

  39. Jutel M, Akdis M, Budak F, et al. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol. 2003;33:1205–14.

    Article  CAS  PubMed  Google Scholar 

  40. Francis JN, Till SJ, Durham SR. Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy. J Allergy Clin Immunol. 2003;111:1255–61.

    Article  CAS  PubMed  Google Scholar 

  41. Mousavi T, Salek Moghadam A, Falak R. Immunotherapy of Chenopodium album induced asthma by intranasal administration of CpG oligodeoxynucleotides in BALB/c mice. Iran J Immunol. 2008;5:57–63.

    PubMed  Google Scholar 

  42. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994;265:1237–40.

    Article  CAS  PubMed  Google Scholar 

  43. Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med. 1996;183:2605–16.

    Article  CAS  PubMed  Google Scholar 

  44. Elias JA, Lee CG, Zheng T, Ma B, Homer RJ, Zhu Z. New insights into the pathogenesis of asthma. J Clin Invest. 2003;111:291–7.

    CAS  PubMed  Google Scholar 

  45. Razafindratsita A, Saint-Lu N, Mascarell L, Berjont N, Bardon T, Betbeder D, et al. Improvement of sublingual immunotherapy efficacy with a mucoadhesive allergen formulation. J Allergy Clin Immunol. 2007;120:278–85.

    Article  CAS  PubMed  Google Scholar 

  46. Bousquet J, Becker WM, Hejjaoui A, Chanal I, Lebel B, Dhivert H, et al. Differences in clinical and immunologic reactivity of patients allergic to grass pollens and to multiple pollen species. II. Efficacy of a doubleblind, placebo-controlled, specific immunotherapy with standardized extracts. J Allergy Clin Immunol. 1991;88:43–53.

    Article  CAS  PubMed  Google Scholar 

  47. Pene J, Rivier A, Lagier B, Becker WM, Michel FB, Bousquet J. Differences in IL-4 release by PBMC are related with heterogeneity of atopy. Immunology. 1994;81:58–64.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

One of the authors (Deepsikha) received financial assistance from Council of Scientific and Industrial Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, D., Mehta, A.K., Arora, N. et al. Proteolytically Inactive Per a 10 Allergen of Periplaneta americana Modulates Th2 Response and Enhances IL-10 in Mouse Model. J Clin Immunol 30, 426–434 (2010). https://doi.org/10.1007/s10875-009-9362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9362-0

Keywords

Navigation