Skip to main content

Advertisement

Log in

Postmenopausal Expression Changes of Immune System-Related Genes in Human Bone Tissue

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

The molecular and cellular interactions between the immune system and bone tissue have been established. Sex hormone deficiency after menopause has multifunctional role by influencing growth, differentiation, and metabolism of the skeletal and the immune system.

Discussion

We have used nonparametric and multidimensional expression pattern analyses to determine significantly changed mRNA profile of immune system-associated genes in postmenopausal (POST) and premenopausal (PRE) nonosteoporotic bone. Ten bone tissue samples from POST patients and six bone tissue samples from PRE women were examined in our study. The transcription differences of the selected 50 genes were analyzed in TaqMan probe-based quantitative real-time reverse transcriptase polymerase chain reaction system. Mann–Whitney test indicated significantly downregulated transcription activity of three genes (CD14, HLA-A/MHCI, ITGAM/CD11b) and upregulated expression of six genes (C3, CD86/B7-2, IL-10, IL-6, TGFB3, TNFSF11/RANKL) in postmenopausal bone. According to the canonical variate analysis results, the groups of POST and PRE women are separable by genes coding for cytokines, costimulator molecules, and cell surface receptors involved in antigen presentation and T cell stimulation processes which have high discriminatory power. Based on a complex gene expression pattern analysis of human bone tissue, we could distinguish POST and PRE states from an immunological aspect. Our data might provide further insight into the changes of the intersystem crosstalk between immune and skeletal homeostasis, as well as local immune response in the altered microenvironment of postmenopausal bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29:403–40.

    Article  CAS  PubMed  Google Scholar 

  2. Walsh MC, Kim N, Kadono Y, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Ann Rev Immunol. 2006;24:33–63.

    Article  CAS  Google Scholar 

  3. Zallone A. Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann N Y Acad Sci. 2006;1068:173–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Updat. 2005;11:411–23.

    Article  CAS  Google Scholar 

  5. Weitzmann MN, Pacifici R. Estrogen regulation of immune cell bone interactions. Ann N Y Acad Sci. 2006;1068:256–74.

    Article  CAS  PubMed  Google Scholar 

  6. Carlsten H. Immune responses and bone loss: the estrogen connection. Immunol Rev. 2005;208:194–206.

    Article  CAS  PubMed  Google Scholar 

  7. Clowes JA, Riggs BL, Khosla S. The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev. 2005;208:207–27.

    Article  CAS  PubMed  Google Scholar 

  8. Safadi FF, Dissanayake IR, Goodman GG, et al. Influence of estrogen deficiency and replacement on T-cell populations in rat lymphoid tissues and organs. Endocr. 2000;12:81–8.

    Article  CAS  Google Scholar 

  9. Deguchi K, Kamada M, Irahara M, et al. Postmenopausal changes in production of type 1 and type 2 cytokines and the effects of hormone replacement therapy. Menopause. 2001;8:266–73.

    Article  CAS  PubMed  Google Scholar 

  10. Kamada M, Irahara M, Maegawa M, et al. Transient increase in the levels of T-helper 1 cytokines in postmenopausal women and the effects of hormone replacement therapy. Gynecol Obstet Invest. 2001;52:82–8.

    Article  CAS  PubMed  Google Scholar 

  11. Cenci S, Toraldo G, Weitzmann MN, et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class II transactivator. Proc Natl Acad Sci. 2003;100:10405–10.

    Article  CAS  PubMed  Google Scholar 

  12. Pacifici R. Estrogen deficiency, T cells and bone loss. Cell Immunol. 2008;252:68–80.

    Article  CAS  PubMed  Google Scholar 

  13. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.

    Article  CAS  PubMed  Google Scholar 

  14. Balla B, Kosa JP, Kiss J, et al. Different gene expression patterns in the bone tissue of aging postmenopausal osteoporotic and non-osteoporotic women. Calcif Tissue Int. 2008;82:12–26.

    Article  CAS  PubMed  Google Scholar 

  15. Benayahu D. Estrogen effects on protein expressed by marrow stromal osteoblasts. Biochem Biophys Res Commun. 1997;233:30–5.

    Article  CAS  PubMed  Google Scholar 

  16. Podani J. Introduction to the exploration of multivariate biological data. Leiden: Backhuys; 2000.

    Google Scholar 

  17. Podani J. SYN-TAX 2000. User’s manual. Budapest: Scientia; 2001.

    Google Scholar 

  18. Romagnani S. Regulation of the T cell response. Clin Exp Allergy. 2006;36:1357–66.

    Article  CAS  PubMed  Google Scholar 

  19. Corthay A. A three-cell model for activation of naive T helper cells. Scand J Immunol. 2006;64:93–6.

    Article  CAS  PubMed  Google Scholar 

  20. Schuurhuis DH, Fu N, Ossendorp F, et al. Ins and outs of dendritic cells. Int Arch Allergy Immunol. 2006;140:53–72.

    Article  PubMed  Google Scholar 

  21. Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006;311:17–58.

    Article  CAS  PubMed  Google Scholar 

  22. Hornef MW, Wick MJ, Rhen M, et al. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol. 2002;3:1033–40.

    Article  CAS  PubMed  Google Scholar 

  23. Moser M, Murphy KM. Dendritic cell regulation of TH1–TH2 development. Nat Immunol. 2000;1:199–205.

    Article  CAS  PubMed  Google Scholar 

  24. de Jong EC, Smits HH, Kapsenberg ML. Dendritic cell-mediated T cell polarization. Springer Semin Immunopathol. 2005;26:289–307.

    Article  PubMed  Google Scholar 

  25. Stopinska-Gluszak U, Waligora J, Grzela T, et al. Effect of estrogen/progesterone hormone replacement therapy on natural killer cell cytotoxicity and immunoregulatory cytokine release by peripheral blood mononuclear cells of postmenopausal women. J Reprod Immunol. 2006;69:65–75.

    Article  CAS  PubMed  Google Scholar 

  26. Carroll MC. The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol. 1998;16:545–68.

    Article  CAS  PubMed  Google Scholar 

  27. van Lookeren Campagne M, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 2007;9:2095–102.

    Article  CAS  PubMed  Google Scholar 

  28. Villiers MB, Perrin-Cocon L, Marche PN, et al. Complement receptors and B lymphocytes. Crit Rev Immunol. 2004;24:465–78.

    Article  CAS  PubMed  Google Scholar 

  29. Fan JD, Wagner BL, McDonnell DP. Identification of the sequences within the human complement 3 promoter required for estrogen responsiveness provides insight into the mechanism of tamoxifen mixed agonist activity. Mol Endocrinol. 1996;10:1605–16.

    Article  CAS  PubMed  Google Scholar 

  30. Wiethe C, Dittmar K, Doan T, et al. Enhanced effector and memory CTL responses generated by incorporation of receptor activator of NF-kappa B (RANK)/RANK ligand costimulatory molecules into dendritic cell immunogens expressing a human tumor-specific antigen. J Immunol. 2003;171:4121–30.

    CAS  PubMed  Google Scholar 

  31. Salek-Ardakani S, Arens R, Flynn R, et al. Preferential use of B7.2 and not B7.1 in priming of vaccinia virus-specific CD8 T cells. J Immunol. 2009;182:2909–18.

    Article  CAS  PubMed  Google Scholar 

  32. Stanley KT, VanDort C, Motyl C, et al. Immunocompetent properties of human osteoblasts: interactions with T lymphocytes. J Bone Miner Res. 2006;21:29–36.

    Article  CAS  PubMed  Google Scholar 

  33. Gallo D, Battaglia A, Mantuano E, et al. 17beta-Estradiol and soy phytochemicals selectively induce a type 2 polarization in mesenteric lymph nodes of ovariectomized rats. Menopause. 2008;15:718–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants NKFP-1A/007/2004 and NKFP-1A/002/2004 from the National Research and Technological Office (NKTH) of Hungary, as well as by research grant ETT 022/2006 from the Ministry of Health, Hungary. J. Podani was supported by a Hungarian Scientific Research Fund (OTKA) grant no. NI 68218. J. Kiss was supported by OTKA grant no. T-037436.

Conflict of interest

All the authors hereby state that they do not possess financial interests and they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János P. Kósa.

Additional information

J. P. Kósa and B. Balla equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kósa, J.P., Balla, B., Kiss, J. et al. Postmenopausal Expression Changes of Immune System-Related Genes in Human Bone Tissue. J Clin Immunol 29, 761–768 (2009). https://doi.org/10.1007/s10875-009-9321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9321-9

Keywords

Navigation