Skip to main content
Log in

Molecular Mechanisms of Regulatory T Cell Development

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

CD4+CD25+ natural regulatory T (nTR) lymphocytes represent a distinct thymus-derived T cell lineage that serves to establish immunological tolerance in the periphery. The discovery of Foxp3 as a transcription factor essential to the differentiation of CD4+CD25+ TR cells enabled detailed studies into the molecular mechanisms of TR cell development, peripheral homeostasis, and effector functions.

Discussion

Comparative analysis of Foxp3+ nTR cells and nTR cell precursors expressing a functionally inactive Foxp3 mutant protein indicated that while Foxp3 is not essential for nTR cell development in the thymus, it is critical to the peripheral homeostasis and suppressor functions of nTR cells. A second subset of Foxp3+ regulatory T cells can be induced de novo from conventional CD4+ Foxp3 T cells both in vitro, upon antigenic stimulation in the presence of transforming growth factor β and interleukin-2, and in vivo. Like nTR cells, the induced regulatory T (iTR) cells are also dependent on Foxp3 expression for their suppressor function. It is likely that nTR and iTR cells serve nonredundant functions in the maintenance of immunological tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chatila TA. Role of regulatory T cells in human diseases. J Allergy Clin Immunol 2005;116:949–59. quiz 960.

    Article  PubMed  CAS  Google Scholar 

  2. Bacchetta R, Gambineri E, Roncarolo MG. Role of regulatory T cells and FOXP3 in human diseases. J Allergy Clin Immunol 2007;120:227–35. quiz 236–7.

    Article  PubMed  CAS  Google Scholar 

  3. Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol 2007;8:457–62.

    Article  PubMed  CAS  Google Scholar 

  4. Shevach EM. CD4+CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002;2:389–400.

    PubMed  CAS  Google Scholar 

  5. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998;188:287–96.

    Article  PubMed  CAS  Google Scholar 

  6. Xu D, Liu H, Komai-Koma M, Campbell C, McSharry C, Alexander J, et al. CD4+CD25+ regulatory T cells suppress differentiation and functions of Th1 and Th2 cells, Leishmania major infection, and colitis in mice. J Immunol 2003;170:394–9.

    PubMed  CAS  Google Scholar 

  7. Stassen M, Jonuleit H, Muller C, Klein M, Richter C, Bopp T, et al. Differential regulatory capacity of CD25+ T regulatory cells and preactivated CD25+ T regulatory cells on development, functional activation, and proliferation of Th2 cells. J Immunol 2004;173:267–74.

    PubMed  CAS  Google Scholar 

  8. Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT. CD4+CD25+T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 2003;198:889–901.

    Article  PubMed  CAS  Google Scholar 

  9. Clark LB, Appleby MW, Brunkow ME, Wilkinson JE, Ziegler SF, Ramsdell F. Cellular and molecular characterization of the scurfy mouse mutant. J Immunol 1999;162:2546–54.

    PubMed  CAS  Google Scholar 

  10. Blair PJ, Bultman SJ, Haas JC, Rouse BT, Wilkinson JE, Godfrey VL. CD4+CD8-T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J Immunol 1994;153:3764–74.

    PubMed  CAS  Google Scholar 

  11. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330–6.

    Article  PubMed  CAS  Google Scholar 

  12. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057–61.

    Article  PubMed  CAS  Google Scholar 

  13. Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003;4:337–42.

    Article  PubMed  CAS  Google Scholar 

  14. Liston A, Farr AG, Chen Z, Benoist C, Mathis D, Manley NR, et al. Lack of Foxp3 function and expression in the thymic epithelium. J Exp Med 2007;204:475–80.

    Article  PubMed  CAS  Google Scholar 

  15. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007;445:771–5.

    Article  PubMed  CAS  Google Scholar 

  16. Lin W, Haribhai D, Relland LM, Truong N, Carlson MR, Williams CB, et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 2007;8:359–68.

    Article  PubMed  CAS  Google Scholar 

  17. Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome [In Process Citation]. J Clin Invest 2000;106:R75–81.

    Article  PubMed  CAS  Google Scholar 

  18. Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 2007;8:277–84.

    Article  PubMed  CAS  Google Scholar 

  19. Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, et al. Thymic selection of CD4+CD25+regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001;2:301–6.

    Article  PubMed  CAS  Google Scholar 

  20. Shevach EM. Certified professionals: CD4+CD25+ suppressor T cells. J Exp Med 2001;193:F41–6.

    Article  PubMed  CAS  Google Scholar 

  21. Jordan MS, Riley MP, von Boehmer H, Caton AJ. Anergy and suppression regulate CD4+ T cell responses to a self peptide. Eur J Immunol 2000;30:136–44.

    Article  PubMed  CAS  Google Scholar 

  22. Kawahata K, Misaki Y, Yamauchi M, Tsunekawa S, Setoguchi K, Miyazaki J, et al. Generation of CD4+CD25+ regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J Immunol 2002;168:4399–405.

    PubMed  CAS  Google Scholar 

  23. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells [comment]. Nat Immunol 2003;4:330–6.

    Article  PubMed  CAS  Google Scholar 

  24. Walker LS, Chodos A, Eggena M, Dooms H, Abbas AK. Antigen-dependent proliferation of CD4+CD25+ regulatory T cells in vivo. J Exp Med 2003;198:249–58.

    Article  PubMed  CAS  Google Scholar 

  25. Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol 2001;2:816–22.

    Article  PubMed  CAS  Google Scholar 

  26. Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 2008;28:112–21.

    Article  PubMed  CAS  Google Scholar 

  27. Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity 2008;28:100–11.

    Article  PubMed  CAS  Google Scholar 

  28. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY. Recognition of the peripheral self by naturally arising CD25+CD4+ T cell receptors. Immunity 2004;21:267–77.

    Article  PubMed  CAS  Google Scholar 

  29. Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 2006;7:401–10.

    Article  PubMed  CAS  Google Scholar 

  30. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 2006;25:249–59.

    Article  PubMed  CAS  Google Scholar 

  31. Wong J, Mathis D, Benoist C. TCR-based lineage tracing: no evidence for conversion of conventional into regulatory T cells in response to a natural self-antigen in pancreatic islets. J Exp Med 2007;204:2039–45.

    Article  PubMed  CAS  Google Scholar 

  32. van Santen HM, Benoist C, Mathis D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med 2004;200:1221–30.

    Article  PubMed  CAS  Google Scholar 

  33. Pacholczyk R, Kern J, Singh N, Iwashima M, Kraj P, Ignatowicz L. Nonself-antigens are the cognate specificities of Foxp3+ regulatory T cells. Immunity 2007;27:493–504.

    Article  PubMed  CAS  Google Scholar 

  34. Pennington DJ, Silva-Santos B, Silberzahn T, Escorcio-Correia M, Woodward MJ, Roberts SJ, et al. Early events in the thymus affect the balance of effector and regulatory T cells. Nature 2006;444:1073–7.

    Article  PubMed  CAS  Google Scholar 

  35. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005;22:329–41.

    Article  PubMed  CAS  Google Scholar 

  36. Gavin MA, Clarke SR, Negrou E, Gallegos A, Rudensky A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat Immunol 2002;3:33–41.

    Article  PubMed  CAS  Google Scholar 

  37. Chen Z, Herman AE, Matos M, Mathis D, Benoist C. Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J Exp Med 2005;202:1387–97.

    Article  PubMed  CAS  Google Scholar 

  38. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 2006;18:1197–209.

    Article  PubMed  CAS  Google Scholar 

  39. Glimcher LH, Townsend MJ, Sullivan BM, Lord GM. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat Rev Immunol 2004;4:900–11.

    Article  PubMed  CAS  Google Scholar 

  40. Kim CH, Kunkel EJ, Boisvert J, Johnston B, Campbell JJ, Genovese MC, et al. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J Clin Invest 2001;107:595–601.

    Article  PubMed  CAS  Google Scholar 

  41. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007;445:931–5.

    Article  PubMed  CAS  Google Scholar 

  42. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007;445:936–40.

    Article  PubMed  CAS  Google Scholar 

  43. Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 2007;27:786–800.

    PubMed  CAS  Google Scholar 

  44. Chatila T. The regulatory T cell transcriptosome: e pluribus unum. Immunity 2007;27:693–5.

    Article  PubMed  CAS  Google Scholar 

  45. Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 2007;13:108–16.

    Article  PubMed  CAS  Google Scholar 

  46. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007;8:1353–62.

    Article  PubMed  CAS  Google Scholar 

  47. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:1875–86.

    Article  PubMed  CAS  Google Scholar 

  48. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25 T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004;172:5149–53.

    PubMed  CAS  Google Scholar 

  49. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25 cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 2007;178:2018–27.

    PubMed  CAS  Google Scholar 

  50. Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 2007;178:4022–6.

    PubMed  CAS  Google Scholar 

  51. Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA. Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 2005;115:1923–33.

    Article  PubMed  CAS  Google Scholar 

  52. Apostolou I, von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 2004;199:1401–8.

    Article  PubMed  CAS  Google Scholar 

  53. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 2007;5:e38.

    Article  PubMed  CAS  Google Scholar 

  54. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007;204:1765–74.

    Article  PubMed  CAS  Google Scholar 

  55. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007;204:1757–64.

    Article  PubMed  CAS  Google Scholar 

  56. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007;317:256–60.

    Article  PubMed  CAS  Google Scholar 

  57. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007;204:1775–85.

    Article  PubMed  CAS  Google Scholar 

  58. Kang SG, Lim HW, Andrisani OM, Broxmeyer HE, Kim CH. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 2007;179:3724–33.

    PubMed  CAS  Google Scholar 

  59. Elias KM, Laurence A, Davidson TS, Stephens G, Kanno Y, Shevach EM, O’Shea JJ. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 2008;111:1013–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talal Chatila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatila, T. Molecular Mechanisms of Regulatory T Cell Development. J Clin Immunol 28, 625–630 (2008). https://doi.org/10.1007/s10875-008-9241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9241-0

Keywords

Navigation