Skip to main content

Advertisement

Log in

5′ Regulatory and 3′ Untranslated Region Polymorphisms of Vitamin D Receptor Gene in South Indian HIV and HIV–TB Patients

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Vitamin D receptor (VDR) gene polymorphisms in the 5′ regulatory region (Cdx2 and A-1012G), coding region (FokI), and 3′ untranslated region (UTR; BsmI, ApaI, and TaqI) were studied to find out whether these polymorphisms are associated with susceptibility to or protection against HIV-1 and development of tuberculosis (TB) in human immunodeficiency virus (HIV)-1-infected patients.

Study Subjects and Methods

The study was carried out in 131 HIV patients without TB (HIV+ TB−) and 113 HIV patients with TB (HIV+ TB+; includes 82 patients with pulmonary TB (HIV+ PTB+) and 31 with extra pulmonary TB), 108 HIV-negative pulmonary TB patients (HIV− PTB+), and 146 healthy controls.

Results

Among the 5′ regulatory and coding region polymorphisms, significantly increased frequency of G/A genotype of Cdx-2 was observed in HIV+ TB− group compared to controls (p = 0.012, odds ratio (OR) 1.89 95% confidence interval (CI) 1.14–3.15). In the 3′ UTR genotypes, a decreased frequency of b/b genotype of BsmI in total HIV patients (p = 0.014, OR 0.54 95% CI 0.32–0.89) and increased frequencies of A/A genotype of ApaI in HIV+ TB+ patients (p = 0.041, OR 1.77 95% CI 1.02–3.06) and t/t genotype of TaqI in HIV+ PTB+ patients (p = 0.05, OR 2.32 95% CI 0.99–5.46) were observed compared to controls. Haplotype analysis revealed significantly increased frequencies of 3′ UTR haplotype B-A-t in HIV+ TB+ and HIV+ PTB+ groups (Pc = 0.030, OR 1.75 95% CI 1.14–2.66) and decreased frequencies of b-A-T haplotype in total HIV patients (Pc = 0.012, OR 0.46 95% CI 0.27–0.77), HIV+ TB− (p = 0.031 OR 0.48 95% CI 0.25–0.89), and HIV+ PTB+ groups (Pc = 0.04, OR 0.47 95% CI 0.23–0.89) compared to controls.

Conclusions

The results suggest that VDR gene 3′ UTR haplotype b-A-T may be associated with protection against HIV infection while B-A-t haplotype might be associated with susceptibility to development of TB in HIV-1-infected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Whalen C, Horsburgh CR, Hom D, Lahart C, Simberkoff M, Ellner J. Accelerated course of human immunodeficiency virus infection after tuberculosis. Am J Respir Crit Care Med. 1995;151:129–35.

    PubMed  CAS  Google Scholar 

  2. O’Brien SJ, Nelson GW. Human genes that limit AIDS. Nat Genet. 2004;36:565–74. doi:10.1038/ng1369.

    Article  PubMed  CAS  Google Scholar 

  3. Narain JP, Lo YR. Epidemiology of HIV-TB in Asia. Indian J Med Res. 2004;120:277–89.

    PubMed  Google Scholar 

  4. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–3. doi:10.1126/science.1123933.

    Article  PubMed  CAS  Google Scholar 

  5. Rigby WF, Waugh M, Graziano RF. Regulation of human monocyte HLA-DR and CD4 antigen expression, and antigen presentation by 1,25-dihydroxyvitamin D3. Blood. 1990;76:189–97.

    PubMed  CAS  Google Scholar 

  6. Connor RI, Rigby WF. 1 alpha, 25-dihydroxyvitamin D3 inhibits productive infection of human monocytes by HIV-1. Biochem Biophys Res Commun. 1991;176:852–9. doi:10.1016/S0006-291X(05)80264-5.

    Article  PubMed  CAS  Google Scholar 

  7. Nevado J, Tenbaum SP, Castillo AI, Sanchez-Pacheco A, Aranda A. Activation of the human immunodeficiency virus type I long terminal repeat by 1alpha, 25-dihydroxyvitamin D3. J Mol Endocrinol. 2007;38:587–601. doi:10.1677/JME-06-0065.

    Article  PubMed  CAS  Google Scholar 

  8. Fang Y, van Meurs JB, d’Alesio A, Jhamai M, Zhao H, Rivadeneira F, et al. Promoter and 3¢-untranslated-region haplotypes in the vitamin d receptor gene predispose to osteoporotic fracture: the Rotterdam study. Am J Hum Genet. 2005;77:807–23. doi:10.1086/497438.

    Article  PubMed  CAS  Google Scholar 

  9. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene. 2004;338:143–56. doi:10.1016/j.gene.2004.05.014.

    Article  PubMed  CAS  Google Scholar 

  10. Barber Y, Rubio C, Fernandez E, Rubio M, Fibla J. Host genetic background at CCR5 chemokine receptor and vitamin D receptor loci and human immunodeficiency virus (HIV) type 1 disease progression among HIV-seropositive injection drug users. J Infect Dis. 2001;184:1279–88. doi:10.1086/324000.

    Article  PubMed  CAS  Google Scholar 

  11. Nieto G, Barber Y, Rubio MC, Rubio M, Fibla J. Association between AIDS disease progression rates and the Fok-I polymorphism of the VDR gene in a cohort of HIV-1 seropositive patients. J Steroid Biochem Mol Biol 2004;89–90:199–207. doi:10.1016/j.jsbmb.2004.03.086.

    Article  PubMed  Google Scholar 

  12. de la Torre MS, Torres C, Nieto G, Vergara S, Carrero AJ, Macias J, et al. Vitamin D receptor gene haplotypes and susceptibility to HIV-1 infection in injection drug users. J Infect Dis. 2008;197:405–10. doi:10.1086/525043.

    Article  PubMed  Google Scholar 

  13. Selvaraj P, Narayanan PR, Reetha AM. Association of vitamin D receptor genotypes with the susceptibility to pulmonary tuberculosis in female patients and resistance in female contacts. Indian J Med Res. 2000;111:172–9.

    PubMed  CAS  Google Scholar 

  14. Selvaraj P, Chandra G, Kurian SM, Reetha AM, Narayanan PR. Association of vitamin D receptor gene variants of Bsm I, Apa I and Fok I polymorphisms with susceptibility or resistance to pulmonary tuberculosis. Curr Sci. 2003;84:1564–8.

    CAS  Google Scholar 

  15. Bornman L, Campbell SJ, Fielding K, Bah B, Sillah J, Gustafson P, et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J Infect Dis. 2004;190:1631–41. doi:10.1086/424462.

    Article  PubMed  CAS  Google Scholar 

  16. Lombard Z, Dalton DL, Venter PA, Williams RC, Bornman L. Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum Immunol. 2006;67:643–54. doi:10.1016/j.humimm.2006.04.008.

    Article  PubMed  CAS  Google Scholar 

  17. Wilbur AK, Kubatko LS, Hurtado AM, Hill KR, Stone AC. Vitamin D receptor gene polymorphisms and susceptibility M. tuberculosis in native Paraguayans. Tuberculosis (Edinb) 2007;87:329–37. doi:10.1016/j.tube.2007.01.001.

    Article  CAS  Google Scholar 

  18. Selvaraj P, Alagarasu K, Harishankar M, Vidyarani M, Narayanan PR. Regulatory region polymorphisms of vitamin D receptor gene in pulmonary tuberculosis patients and normal healthy subjects of south India. Int J Immunogenet. 2008;35:251–4. doi:10.1111/j.1744-313X.2008.00764.x.

    Article  PubMed  CAS  Google Scholar 

  19. Alagarasu K, Selvaraj P, Swaminathan S, Raghavan S, Narendran G, Narayanan PR. Mannose binding lectin gene variants and susceptibility to tuberculosis in HIV-1 infected patients of South India. Tuberculosis (Edinb). 2007;87:535–43. doi:10.1016/j.tube.2007.07.007.

    Article  CAS  Google Scholar 

  20. Fang Y, van Meurs JB, Bergink AP, Hofman A, van Duijn CM, van Leeuwen JP, et al. Cdx-2 polymorphism in the promoter region of the human vitamin D receptor gene determines susceptibility to fracture in the elderly. J Bone Miner Res. 2003;18:1632–41. doi:10.1359/jbmr.2003.18.9.1632.

    Article  PubMed  CAS  Google Scholar 

  21. Pani MA, Knapp M, Donner H, Braun J, Baur MP, Usadel KH, et al. Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans. Diabetes. 2000;49:504–7. doi:10.2337/diabetes.49.3.504.

    Article  PubMed  CAS  Google Scholar 

  22. Halsall JA, Osborne JE, Potter L, Pringle JH, Hutchinson PE. A novel polymorphism in the 1A promoter region of the vitamin D receptor is associated with altered susceptibility and prognosis in malignant melanoma. Br J Cancer. 2004;91:765–70.

    PubMed  CAS  Google Scholar 

  23. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5. doi:10.1093/bioinformatics/bth457.

    Article  PubMed  CAS  Google Scholar 

  24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. doi:10.1086/519795.

    Article  PubMed  CAS  Google Scholar 

  25. Selvaraj P, Chandra G, Jawahar MS, Rani MV, Rajeshwari DN, Narayanan PR. Regulatory role of vitamin D receptor gene variants of Bsm I, Apa I, Taq I, and Fok I polymorphisms on macrophage phagocytosis and lymphoproliferative response to Mycobacterium tuberculosis antigen in pulmonary tuberculosis. J Clin Immunol. 2004;24:523–32. doi:10.1023/B:JOCI.0000040923.07879.31.

    Article  PubMed  CAS  Google Scholar 

  26. Selvaraj P, Vidyarani M, Alagarasu K, Prabhu Anand S, Narayanan PR. Regulatory role of promoter and 3’ UTR variants of vitamin D receptor gene on cytokine response in pulmonary tuberculosis. J Clin Immunol 2008;28:306–13. doi:10.1007/s10875-007-9152-5.

    Article  PubMed  CAS  Google Scholar 

  27. Kollmann TR, Pettoello-Mantovani M, Katopodis NF, Hachamovitch M, Rubinstein A, Kim A, et al. Inhibition of acute in vivo human immunodeficiency virus infection by human interleukin 10 treatment of SCID mice implanted with human fetal thymus and liver. Proc Natl Acad Sci U S A. 1996;93:3126–31. doi:10.1073/pnas.93.7.3126.

    Article  PubMed  CAS  Google Scholar 

  28. Shin HD, Winkler C, Stephens JC, Bream J, Young H, Goedert JJ, et al. Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc Natl Acad Sci U S A. 2000;97:14467–72. doi:10.1073/pnas.97.26.14467.

    Article  PubMed  CAS  Google Scholar 

  29. Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Soderlund J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res. 2007;5:410–5. doi:10.2174/157016207781023947.

    Article  PubMed  CAS  Google Scholar 

  30. Holmes CB, Wood R, Badri M, Zilber S, Wang B, Maartens G, et al. CD4 decline and incidence of opportunistic infections in Cape Town, South Africa: implications for prophylaxis and treatment. J Acquir Immune Defic Syndr. 2006;42:464–9. doi:10.1097/01.qai.0000225729.79610.b7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Indian Council of Medical Research, New Delhi under HIV–TB Task force program, Project No.: 2003-05490. We also acknowledge the Indian Council of Medical Research, New Delhi for providing senior research fellowship to Mr. K. Alagarasu. We thank Ms. J. Chitra for the technical help rendered by her. We are indebted to all the patients and healthy volunteers who participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Selvaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alagarasu, K., Selvaraj, P., Swaminathan, S. et al. 5′ Regulatory and 3′ Untranslated Region Polymorphisms of Vitamin D Receptor Gene in South Indian HIV and HIV–TB Patients. J Clin Immunol 29, 196–204 (2009). https://doi.org/10.1007/s10875-008-9234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-008-9234-z

Keywords

Navigation