Skip to main content

Advertisement

Log in

Host Defenses to Rickettsia rickettsii Infection Contribute to Increased Microvascular Permeability in Human Cerebral Endothelial Cells

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Rickettsiae are arthropod-borne intracellular bacterial pathogens that primarily infect the microvascular endothelium leading to systemic spread of the organisms and the major pathophysiological effect, increased microvascular permeability, and edema in vital organs such as the lung and brain. Much work has been done on mechanisms of immunity to rickettsiae, as well as the responses of endothelial cells to rickettsial invasion. However, to date, no one has described the mechanisms of increased microvascular permeability during acute rickettsiosis. We sought to establish an in vitro model of human endothelial-target rickettsial infection using the etiological agent of Rocky Mountain spotted fever, Rickettsia rickettsii, and human cerebral microvascular endothelial cells. Endothelial cells infected with R. rickettsii exhibited a dose-dependent decrease in trans-endothelial electrical resistance, which translates into increased monolayer permeability. Additionally, we showed that the addition of pro-inflammatory stimuli essential to rickettsial immunity dramatically enhanced this effect. This increase in permeability correlates with dissociation of adherens junctions between endothelial cells and is not dependent on the presence of nitric oxide. Taken together, these results demonstrate for the first time that increased microvascular permeability associated with rickettsial infection is partly attributable to intracellular rickettsiae and partly attributable to the immune defenses that have evolved to protect the host from rickettsial spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raoult D, Roux V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev. 1997;10:694–719.

    PubMed  CAS  Google Scholar 

  2. Valbuena G, Feng HM, Walker DH. Mechanisms of immunity against rickettsiae. New perspectives and opportunities offered by unusual intracellular parasites. Microbes Infect. 2002;4:625–33.

    Article  PubMed  CAS  Google Scholar 

  3. Masters EJ, Olson GS, Weiner SJ, Paddock CD. Rocky Mountain spotted fever: a clinician’s dilemma. Arch Intern Med. 2003;163:769–74.

    Article  PubMed  Google Scholar 

  4. Walker DH. Rocky Mountain spotted fever: a seasonal alert. Clin Infect Dis. 1995;20:1111–7.

    PubMed  CAS  Google Scholar 

  5. Walker DH, Mattern WD. Rickettsial vasculitis. Am Heart J. 1980;100:896–906.

    Article  PubMed  CAS  Google Scholar 

  6. Walker DH, Crawford CG, Cain BG. Rickettsial infection of the pulmonary microcirculation: the basis for interstitial pneumonitis in Rocky Mountain spotted fever. Hum Pathol. 1980;11:263–72.

    Article  PubMed  CAS  Google Scholar 

  7. Walker DH, Popov VL, Feng HM. Establishment of a novel endothelial target mouse model of a typhus group rickettsiosis: evidence for critical roles for gamma interferon and CD8 T lymphocytes. Lab Invest. 2000;80:1361–72.

    PubMed  CAS  Google Scholar 

  8. Feng HM, Wen J, Walker DH. Rickettsia australis infection: a murine model of a highly invasive vasculopathic rickettsiosis. Am J Pathol. 1993;142:1471–82.

    PubMed  CAS  Google Scholar 

  9. Walker DH, Popov VL, Wen J, Feng HM. Rickettsia conorii infection of C3H/HeN mice. A model of endothelial-target rickettsiosis. Lab Invest. 1994;70:358–68.

    PubMed  CAS  Google Scholar 

  10. Roggli VL, Keener S, Bradford WD, Pratt PC, Walker DH. Pulmonary pathology of Rocky Mountain spotted fever (RMSF) in children. Pediatr Pathol. 1985;4:47–57.

    Article  PubMed  CAS  Google Scholar 

  11. Li H, Jerrells TR, Spitalny GL, Walker DH. Gamma interferon as a crucial host defense against Rickettsia conorii in vivo. Infect Immun. 1987;55:1252–5.

    PubMed  CAS  Google Scholar 

  12. Jerrells TR, Li H, Walker DH. In vivo and in vitro role of gamma interferon in immune clearance of Rickettsia species. Adv Exp Med Biol. 1988;239:193–200.

    PubMed  CAS  Google Scholar 

  13. Feng HM, Walker DH. Interferon-gamma and tumor necrosis factor-alpha exert their antirickettsial effect via induction of synthesis of nitric oxide. Am J Pathol. 1993;143:1016–23.

    PubMed  CAS  Google Scholar 

  14. Walker DH, Popov VL, Crocquet-Valdes PA, Welsh CJ, Feng HM. Cytokine-induced, nitric oxide-dependent, intracellular antirickettsial activity of mouse endothelial cells. Lab Invest. 1997;76:129–138.

    PubMed  CAS  Google Scholar 

  15. Feng HM, Popov VL, Walker DH. Depletion of gamma interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: impairment of rickettsicidal nitric oxide production resulting in fatal, overwhelming rickettsial disease. Infect Immun. 1994;62:1952–60.

    PubMed  CAS  Google Scholar 

  16. Walker DH, Olano JP, Feng HM. Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection. Infect Immun. 2001;69:1841–6.

    Article  PubMed  CAS  Google Scholar 

  17. Tinsley JH, Ustinova EE, Xu W, Yuan SY. Src-dependent, neutrophil-mediated vascular hyperpermeability and beta-catenin modification. Am J Physiol Cell Physiol. 2002;283:C1745–51.

    PubMed  CAS  Google Scholar 

  18. Mehta D. p120: the guardian of endothelial junctional integrity. Am J Physiol Lung Cell Mol Physiol. 2004;286:L1140–2.

    Article  PubMed  CAS  Google Scholar 

  19. Valbuena G, Walker DH. Changes in the adherens junctions of human endothelial cells infected with spotted fever group rickettsiae. Virchows Arch. 2005;446:379–82.

    Article  PubMed  Google Scholar 

  20. Hanson BA, Wisseman CL Jr, Waddell A, Silverman DJ. Some characteristics of heavy and light bands of Rickettsia prowazekii on Renografin gradients. Infect Immun. 1981;34:596–604.

    PubMed  CAS  Google Scholar 

  21. Duvar S, Suzuki M, Muruganandam A, Yu RK. Glycosphingolipid composition of a new immortalized human cerebromicrovascular endothelial cell line. J Neurochem. 2000;75:1970–6.

    Article  PubMed  CAS  Google Scholar 

  22. Labruna MB, Whitworth T, Bouyer DH, McBride J, Camargo LM, Camargo EP, Popov V, Walker DH. Rickettsia bellii and Rickettsia amblyommii in Amblyomma ticks from the State of Rondonia, Western Amazon, Brazil. J Med Entomol. 2004;41:1073–81.

    Article  PubMed  Google Scholar 

  23. Valbuena G, Walker DH. Effect of blocking the CXCL9/10-CXCR3 chemokine system in the outcome of endothelial-target rickettsial infections. Am J Trop Med Hyg. 2004;71:393–9.

    PubMed  CAS  Google Scholar 

  24. Blann AD, Woywodt A, Bertolini F, Bull TM, Buyon JP, Clancy RM, Haubitz M, Hebbel RP, Lip GY, Mancuso P, Sampol J, Solovey A, Dignat-George F. Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost. 2005;93:228–35.

    PubMed  CAS  Google Scholar 

  25. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta. 2006;368:33–47.

    Article  PubMed  CAS  Google Scholar 

  26. Feng HM, Walker DH. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect Immun. 2000;68:6729–36.

    Article  PubMed  CAS  Google Scholar 

  27. Peters CJ, Khan AS. Hantavirus pulmonary syndrome: the new American hemorrhagic fever. Clin Infect Dis. 2002;34:1224–31.

    Article  PubMed  CAS  Google Scholar 

  28. Lorente JA, Marshall JC. Neutralization of tumor necrosis factor in preclinical models of sepsis. Shock. 2005;24(Suppl 1):107–19.

    Article  PubMed  CAS  Google Scholar 

  29. Ferro TJ, Gertzberg N, Selden L, Neumann P, Johnson A. Endothelial barrier dysfunction and p42 oxidation induced by TNF-alpha are mediated by nitric oxide. Am J Physiol. 1997;272:L979–88.

    PubMed  CAS  Google Scholar 

  30. Ferro T, Neumann P, Gertzberg N, Clements R, Johnson A. Protein kinase C-alpha mediates endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol Lung Cell Mol Physiol. 2000;278:L1107–17.

    PubMed  CAS  Google Scholar 

  31. Rothwell NJ, Hopkins SJ. Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurosci. 1995;18:130–6.

    Article  PubMed  CAS  Google Scholar 

  32. Spellerberg B, Tuomanen EI. The pathophysiology of pneumococcal meningitis. Ann Med. 1994;26:411–8.

    PubMed  CAS  Google Scholar 

  33. Woods ME, Wen G, Olano JP. Nitric oxide as a mediator of increased microvascular permeability during acute rickettsioses. Ann N Y Acad Sci. 2005;1063:239–45.

    Article  PubMed  CAS  Google Scholar 

  34. Nwariaku FE, Chang J, Zhu X, Liu Z, Duffy SL, Halaihel NH, Terada L, Turnage RH. The role of p38 map kinase in tumor necrosis factor-induced redistribution of vascular endothelial cadherin and increased endothelial permeability. Shock. 2002;18:82–5.

    Article  PubMed  Google Scholar 

  35. Parikh AA, Salzman AL, Fischer JE, Szabo C, Hasselgren PO. Interleukin-1 beta and interferon-gamma regulate interleukin-6 production in cultured human intestinal epithelial cells. Shock. 1997;8:249–55.

    Article  PubMed  CAS  Google Scholar 

  36. Kaplanski G, Teysseire N, Farnarier C, Kaplanski S, Lissitzky JC, Durand JM, Soubeyrand J, Dinarello CA, Bongrand P. IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. J Clin Invest. 1995;96:2839–44.

    Article  PubMed  CAS  Google Scholar 

  37. Paul R, Koedel U, Winkler F, Kieseier BC, Fontana A, Kopf M, Hartung HP, Pfister HW. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain. 2003;126:1873–82.

    Article  PubMed  Google Scholar 

  38. Desai TR, Leeper NJ, Hynes KL, Gewertz BL. Interleukin-6 causes endothelial barrier dysfunction via the protein kinase C pathway. J Surg Res. 2002;104:118–23.

    Article  PubMed  CAS  Google Scholar 

  39. Sahni SK, Turpin LC, Brown TL, Sporn LA. Involvement of protein kinase C in Rickettsia rickettsii-induced transcriptional activation of the host endothelial cell. Infect Immun. 1999;67:6418–23.

    PubMed  CAS  Google Scholar 

  40. Walker DH, Cain BG. The rickettsial plaque. Evidence for direct cytopathic effect of Rickettsia rickettsii. Lab Invest. 1980;43:388–96.

    PubMed  CAS  Google Scholar 

  41. Walker DH, Firth WT, Edgell CJ. Human endothelial cell culture plaques induced by Rickettsia rickettsii. Infect Immun. 1982;37:301–6.

    PubMed  CAS  Google Scholar 

  42. Silverman DJ, Santucci LA. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever. Infect Immun. 1988;56:3110–5.

    PubMed  CAS  Google Scholar 

  43. Devamanoharan PS, Santucci LA, Hong JE, Tian X, Silverman DJ. Infection of human endothelial cells by Rickettsia rickettsii causes a significant reduction in the levels of key enzymes involved in protection against oxidative injury. Infect Immun. 1994;62:2619–21.

    PubMed  CAS  Google Scholar 

  44. Eremeeva ME, Silverman DJ. Effects of the antioxidant alpha-lipoic acid on human umbilical vein endothelial cells infected with Rickettsia rickettsii. Infect Immun. 1998;66:2290–9.

    PubMed  CAS  Google Scholar 

  45. Okayama N, Kevil CG, Correia L, Jourd’heuil D, Itoh M, Grisham MB, Alexander JS. Nitric oxide enhances hydrogen peroxide-mediated endothelial permeability in vitro. Am J Physiol. 1997;273:C1581–7.

    PubMed  CAS  Google Scholar 

  46. Eremeeva ME, Silverman DJ. Rickettsia rickettsii infection of the EA.hy 926 endothelial cell line: morphological response to infection and evidence for oxidative injury. Microbiology. 1998;144( Pt 8):2037–48.

    Article  PubMed  CAS  Google Scholar 

  47. Gomez RM, Pozner RG, Lazzari MA, D’Atri LP, Negrotto S, Chudzinski-Tavassi AM, Berria MI, Schattner M. Endothelial cell function alteration after Junin virus infection. Thromb Haemost. 2003;90:326–33.

    PubMed  CAS  Google Scholar 

  48. Tseng CS, Lo HW, Teng HC, Lo WC, Ker CG. Elevated levels of plasma VEGF in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol. 2005;43:99–102.

    Article  PubMed  CAS  Google Scholar 

  49. Azizan A, Sweat J, Espino C, Gemmer J, Stark L, Kazanis D. Differential proinflammatory and angiogenesis-specific cytokine production in human pulmonary endothelial cells, HPMEC-ST1.6R infected with dengue-2 and dengue-3 virus. J Virol Methods. 2006;138:211–7.

    Article  PubMed  CAS  Google Scholar 

  50. Srikiatkhachorn A, Ajariyakhajorn C, Endy TP, Kalayanarooj S, Libraty DH, Green S, Ennis FA, Rothman AL. Virus-induced decline in soluble vascular endothelial growth receptor 2 is associated with plasma leakage in dengue hemorrhagic fever. J Virol. 2007;81:1592–600.

    Google Scholar 

  51. Clifton DR, Rydkina E, Huyck H, Pryhuber G, Freeman RS, Silverman DJ, Sahni SK. Expression and secretion of chemotactic cytokines IL-8 and MCP-1 by human endothelial cells after Rickettsia rickettsii infection: regulation by nuclear transcription factor NF-kappaB. Int J Med Microbiol. 2005;295:267–78.

    Article  PubMed  CAS  Google Scholar 

  52. Rydkina E, Silverman DJ, Sahni SK. Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induction of chemokine response. Cell Microbiol. 2005;7:1519–30.

    Article  PubMed  CAS  Google Scholar 

  53. Chiang ET, Persaud-Sawin DA, Kulkarni S, Garcia JG, Imani F. Bluetongue virus and double-stranded RNA increase human vascular permeability: role of p38 MAPK. J Clin Immunol. 2006;26:406–16.

    Article  PubMed  CAS  Google Scholar 

  54. Song L, Pachter JS. Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res. 2004;67:78–89.

    Article  PubMed  CAS  Google Scholar 

  55. Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab. 2005;25:593–606.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by funding from the United States Army Research and Material Command #DAMD17-02-1-0198 (J.P.O) and the NIH T32 Training Grant in Biodefense AI 060549 (M.E.W.). The authors would also like to acknowledge the W.M. Keck Center for Virus Imaging. Finally, the authors would like to thank Dr. David Walker for his critical evaluation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Olano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, M.E., Olano, J.P. Host Defenses to Rickettsia rickettsii Infection Contribute to Increased Microvascular Permeability in Human Cerebral Endothelial Cells. J Clin Immunol 28, 174–185 (2008). https://doi.org/10.1007/s10875-007-9140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-007-9140-9

Keywords

Navigation