Skip to main content

Advertisement

Log in

Immunomodulatory Drug CC-4047 is a Cell-type and Stimulus-Selective Transcriptional Inhibitor of Cyclooxygenase 2

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

COX2 (prostaglandin G/H synthase, PTGS2) is a well-validated target in the fields of both oncology and inflammation. Despite their significant toxicity profile, non-steroidal anti-inflammatory drugs (NSAIDs) have become standard of care in the treatment of many COX2-mediated inflammatory conditions. In this report, we show that one IMiDs® immunomodulatory drug, CC-4047, can reduce the levels of COX2 and the production of prostaglandins (PG) in human LPS-stimulated monocytes. The inhibition of COX2 by CC-4047 occurs at the level of gene transcription, by reducing the LPS-stimulated transcriptional activity at the COX2 gene. Because it is a transcriptional rather than an enzymatic inhibitor of COX2, CC-4047 inhibition of PG production is not susceptible to competition by exogenous arachadonic acid (AA). The distinct mechanisms of action allow CC-4047 and a COX2-selective NSAID to work additively to block PG secretion from monocytes. CC-4047 does not, however, block COX2 induction in or prostacyclin secretion from IL-1β stimulated human umbilical vein endothelial cells (HUVEC) cells, nor does it inhibit COX1 in either monocytes or HUVEC cells. CC-4047 also inhibits COX2 and PG production in monocytes derived from patients with sickle cell disease (SCD). Taken together, the data in this manuscript suggest CC-4047 will provide important anti-inflammatory benefit to patients and will improve the safety of NSAIDs in the treatment of SCD or other inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Smyth E, Burke A, FitzGerald GA: Lipid-derived autacoids. New York, NY, USA, McGraw-Hill 2005

    Google Scholar 

  2. Smith WL, DeWitt DL, Garavito RM: Cyclooxygenases: Structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182, 2000

    Article  PubMed  CAS  Google Scholar 

  3. Merrill JT: Emergence of targeted immune therapies for systemic lupus. Expert Opin Emerg Drugs 10:53–65, 2005

    Article  PubMed  CAS  Google Scholar 

  4. Ballas SK: Sickle cell anaemia: Progress in pathogenesis and treatment. Drugs 62:1143–1172, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Strand V: Innovative treatment approaches for rheumatoid arthritis. Issues in clinical trials of biological agents. Baillieres Clin Rheumatol 9:825–835, 1995

    Article  PubMed  CAS  Google Scholar 

  6. Xu L, Zhang L, Yi Y, Kang HK, Datta SK: Human lupus T cells resist inactivation and escape death by upregulating COX-2. Nat Med 10:411–415, 2004

    Article  PubMed  CAS  Google Scholar 

  7. Kaul DK, Liu XD, Chang HY, Nagel RL, Fabry ME: Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. J Clin Invest 114:1136–1145, 2004

    Article  PubMed  CAS  Google Scholar 

  8. Hochberg MC: COX-2 selective inhibitors in the treatment of arthritis: A rheumatologist perspective. Curr Top Med Chem 5:443–448, 2005

    Article  PubMed  CAS  Google Scholar 

  9. Bidgood MJ, Jamal OS, Cunningham AM, Brooks PM, Scott KF: Type IIA secretory phospholipase A2 up-regulates cyclooxygenase-2 and amplifies cytokine-mediated prostaglandin production in human rheumatoid synoviocytes. J Immunol 165:2790–2797, 2000

    PubMed  CAS  Google Scholar 

  10. Schuna AA: Update on treatment of rheumatoid arthritis. J Am Pharm Assoc (Wash) 38:728–735; quiz 735–727, 1998

    CAS  Google Scholar 

  11. Grosser T, Fries S, FitzGerald GA: Biological basis for the cardiovascular consequences of COX-2 inhibition: Therapeutic challenges and opportunities. J Clin Invest 116:4–15, 2006

    Article  PubMed  CAS  Google Scholar 

  12. Kumar S, Rajkumar SV: Thalidomide and lenalidomide in the treatment of multiple myeloma. Eur J Cancer 2006

  13. Anderson G, Gries M, Kurihara N, Honjo T, Anderson J, Donnenberg V, Donnenberg A, Ghobrial I, Mapara MY, Stirling D, Roodman D, Lentzsch S: Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood 107:3098–3105, 2006

    Article  PubMed  CAS  Google Scholar 

  14. Hernandez-Ilizaliturri FJ, Reddy N, Holkova B, Ottman E, Czuczman MS: Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res 11:5984–5992, 2005

    Article  PubMed  CAS  Google Scholar 

  15. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G: Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173:699–703, 1991

    Article  PubMed  CAS  Google Scholar 

  16. Labhart P, Karmakar S, Salicru EM, Egan BS, Alexiadis V, O’Malley BW, Smith CL: Identification of target genes in breast cancer cells directly regulated by the SRC-3/AIB1 coactivator. Proc Natl Acad Sci USA 102:1339–1344, 2005

    Article  PubMed  CAS  Google Scholar 

  17. Payvandi F, Wu L, Haley M, Schafer PH, Zhang LH, Chen RS, Muller GW, Stirling DI: Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-alpha, IL-1beta, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. Cell Immunol 230:81–88, 2004

    Article  PubMed  CAS  Google Scholar 

  18. Panara MR, Greco A, Santini G, Sciulli MG, Rotondo MT, Padovano R, di Giamberardino M, Cipollone F, Cuccurullo F, Patrono C, et al.: Effects of the novel anti-inflammatory compounds, N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulphonamide (NS-398) and 5-methanesulphonamido-6-(2,4-difluorothio-phenyl)-1-inda none (L-745,337), on the cyclo-oxygenase activity of human blood prostaglandin endoperoxide synthases. Br J Pharmacol 116:2429–2434, 1995

    PubMed  CAS  Google Scholar 

  19. Bernstein BE, Humphrey EL, Liu CL, Schreiber SL: The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications. Methods Enzymol 376:349–360, 2004

    Article  PubMed  CAS  Google Scholar 

  20. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313, 2006

    Article  PubMed  CAS  Google Scholar 

  21. Benson LJ, Gu Y, Yakovleva T, Tong K, Barrows C, Strack CL, Cook RG, Mizzen CA, Annunziato AT: Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J Biol Chem 281:9287–9296, 2006

    Article  PubMed  CAS  Google Scholar 

  22. Miao F, Gonzalo IG, Lanting L, Natarajan R: In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279:18091–18097, 2004

    Article  PubMed  CAS  Google Scholar 

  23. Park GY, Joo M, Pedchenko T, Blackwell TS, Christman JW: Regulation of macrophage cyclooxygenase-2 gene expression by modifications of histone H3. Am J Physiol Lung Cell Mol Physiol 286:L956–L962, 2004

    Article  PubMed  CAS  Google Scholar 

  24. Hamilton LC, Mitchell JA, Tomlinson AM, Warner TD: Synergy between cyclo-oxygenase-2 induction and arachidonic acid supply in vivo: Consequences for nonsteroidal antiinflammatory drug efficacy. Faseb J 13:245–251, 1999

    PubMed  CAS  Google Scholar 

  25. Rouzer CA, Kingsley PJ, Wang H, Zhang H, Morrow JD, Dey SK, Marnett LJ: Cyclooxygenase-1-dependent prostaglandin synthesis modulates tumor necrosis factor-alpha secretion in lipopolysaccharide-challenged murine resident peritoneal macro-phages. J Biol Chem 279:34256–34268, 2004

    Article  PubMed  CAS  Google Scholar 

  26. Fitzgerald GA: Coxibs and cardiovascular disease. N Engl J Med 351:1709–1711, 2004

    Article  PubMed  CAS  Google Scholar 

  27. Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M: Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 166:2018–2024, 2001

    PubMed  CAS  Google Scholar 

  28. Oude Nijhuis CS, Vellenga E, Daenen SM, Kamps WA, De Bont ES: Endothelial cells are main producers of interleukin 8 through Toll-like receptor 2 and 4 signaling during bacterial infection in leukopenic cancer patients. Clin Diagn Lab Immunol 10:558–563, 2003

    Article  PubMed  CAS  Google Scholar 

  29. Martin MU, Wesche H: Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta 1592:265–280, 2002

    Article  PubMed  CAS  Google Scholar 

  30. Greig GM, Francis DA, Falgueyret JP, Ouellet M, Percival MD, Roy P, Bayly C, Mancini JA, O’Neill GP: The interaction of arginine 106 of human prostaglandin G/H synthase-2 with inhibitors is not a universal component of inhibition mediated by nonsteroidal anti-inflammatory drugs. Mol Pharmacol 52:829–838, 1997

    PubMed  CAS  Google Scholar 

  31. Graido-Gonzalez E, Doherty JC, Bergreen EW, Organ G, Telfer M, McMillen MA: Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood 92:2551–2555, 1998

    PubMed  CAS  Google Scholar 

  32. Kurantsin-Mills J, Ibe BO, Natta CL, Raj JU, Siegel RS, Lessin LS: Elevated urinary levels of thromboxane and prostacyclin metabolities in sickle cell disease reflects activated platelets in the circulation. Br J Haematol 87:580–585, 1994

    PubMed  CAS  Google Scholar 

  33. de Parseval L: Selected IMIDs® Immunomodulatory drugs: New approaches to the regulation of erythropoiesis and hemoglobin synthesis in b-hemoglobinopathies. In 11th Congress of the European Hematology Association, Amsterdam, The Netherlands, 2006

  34. Pace BS, Zein S: Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev Dyn 235:1727–1737, 2006

    Article  PubMed  CAS  Google Scholar 

  35. Manci EA, Culberson DE, Yang YM, Gardner TM, Powell R, Haynes J, Jr., Shah AK, Mankad VN: Causes of death in sickle cell disease: An autopsy study. Br J Haematol 123:359–365, 2003

    Article  PubMed  Google Scholar 

  36. Yanaka N, Koyama TA, Komatsu S, Nakamura E, Kanda M, Kato N: Vitamin B6 suppresses NF-kappaB activation in LPS-stimulated mouse macrophages. Int J Mol Med 16:1071–1075, 2005

    PubMed  CAS  Google Scholar 

  37. Hou DX, Yanagita T, Uto T, Masuzaki S, Fujii M: Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure-activity relationship and molecular mechanisms involved. Biochem Pharmacol 70:417–425, 2005

    Article  PubMed  CAS  Google Scholar 

  38. Ahn KY, Kim BH, Lee YR, Hwang DH, Chung EY, Min KR, Kim Y: Dual inhibitory effects of furonaphthoquinone compound on enzyme activity and lipopolysaccharide-induced expression of cyclooxygenase-2 in macrophages. Biochem Biophys Res Commun 336:93–99, 2005

    Article  PubMed  CAS  Google Scholar 

  39. Welm AL, Mackey SL, Timchenko LT, Darlington GJ, Timchenko NA: Translational induction of liver-enriched transcriptional inhibitory protein during acute phase response leads to repression of CCAAT/enhancer binding protein alpha mRNA. J Biol Chem 275:27406–27413, 2000

    PubMed  CAS  Google Scholar 

  40. Wadleigh DJ, Reddy ST, Kopp E, Ghosh S, Herschman HR: Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macrophages. J Biol Chem 275:6259–6266, 2000

    Article  PubMed  CAS  Google Scholar 

  41. Aung HT, Schroder K, Himes SR, Brion K, van Zuylen W, Trieu A, Suzuki H, Hayashizaki Y, Hume DA, Sweet MJ, Ravasi T: LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. Faseb J 20:1315–1327, 2006

    Article  PubMed  CAS  Google Scholar 

  42. Fujita J, Mestre JR, Zeldis JB, Subbaramaiah K, Dannenberg AJ: Thalidomide and its analogues inhibit lipopolysaccharide-mediated Iinduction of cyclooxygenase-2. Clin Cancer Res 7:3349–3355, 2001

    PubMed  CAS  Google Scholar 

  43. Streetly M, Hunt BJ, Parmar K, Jones R, Zeldis J, Schey S: Markers of endothelial and haemostatic function in the treatment of relapsed myeloma with the immunomodulatory agent Actimid (CC-4047) and their relationship with venous thrombosis. Eur J Haematol 74:293–296, 2005

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank members of the Discovery Research and Biology programs at Celgene for helpful discussions and critical review of the data contained in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, G.D., Jensen-Pergakes, K., Wilkey, C. et al. Immunomodulatory Drug CC-4047 is a Cell-type and Stimulus-Selective Transcriptional Inhibitor of Cyclooxygenase 2. J Clin Immunol 27, 210–220 (2007). https://doi.org/10.1007/s10875-007-9070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-007-9070-6

KEY WORDS

Navigation