Skip to main content

Advertisement

Log in

Increased Apoptosis of CD20+ IgA+ B Cells is the Basis for IgA Deficiency: The Molecular Mechanism for Correction In Vitro by IL-10 and CD40L

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

IgA deficiency is the most common primary immunodeficiency in humans. Comparative analysis of gene expression in PBMC from IgA-deficient (IgAd) and normal donors using functional multiplex panels showed overexpression of the Caspase-1 (CASP-1) gene. Cells from all the IgAd donors (n=7) expressed 4–10-fold caspase-1 mRNA over normal controls (n=5). CD19+ B cells from all IgAd donors produced IgA in cultures following IL-10 and CD40L with Staphylococcus aureus (Cowan) (SAC) or tetanus toxoid (TT) treatments. In CD19+ B cells from IgAd donors, reconstitution of IgA secretion was associated with protection of the CD20+ B cell population that underwent apoptosis in the absence of IL-10, CD40L, and TT (triple treatment). Caspase-1 gene expression was decreased in the reconstituted cells. Furthermore, treatment with a caspase-1 inhibitor also independently protected against B cell apoptosis in vitro. An apoptosis-specific cDNA array showed differential expression of 4 out of 96 genes and a shift towards survival-related gene expression from the apoptotic to the protected B cells after triple treatment. There was an increase in the expression of the IAP-2 (inhibitor of apoptosis) gene in the reconstituted cells. Upregulation of the IAP-2 gene protects B cells from deletion and allows for IgA secretion in this system. The inability to detect secreted IgA in IgAd patients could result from the loss of IgA-committed B cells that express high levels of caspase-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Rockey JH, Hanson LÅ, Heremans JF, Kunkel HG: Beta-2A aglobulinemia in two healthy men. J Lab Clin Med 63:205–212, 1964.

    PubMed  CAS  Google Scholar 

  2. Bachmann R: Studies on the serum γA-globulin level. III. The frequency of A-gamma-A-globulinemia. Scand J Clin Lab Invest 17:316–320, 1965.

    Article  PubMed  CAS  Google Scholar 

  3. Burrows PD, Cooper MD: IgA deficiency. Adv Immunol 65:245–276, 1997.

    Article  PubMed  CAS  Google Scholar 

  4. Hammerström L, Vorechovsky I, Webster D: Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol 120:225–231, 2000.

    Article  PubMed  Google Scholar 

  5. Cunningham-Rundles C: Physiology of IgA and IgA deficiency. J Clin Immunol 21:303–309, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Amman AJ, Hong R: Selective IgA deficiency: Presentation of 30 cases and a review of the literature. Medicine 60:223–236, 1971.

    Article  Google Scholar 

  7. Bjørkander J, Blake B, Oxelius VA, Hanson LÅ: Impaired lung function in patients with IgA deficiency and low levels of IgG2 or IgG3. N Engl J Med 313:720–724, 1985.

    Article  PubMed  Google Scholar 

  8. Schaffer FM, Monteiro RC, Volanakis JE, Cooper MD: IgA deficiency. Immunodefic Rev 3:15–44, 1991.

    CAS  Google Scholar 

  9. Lewkonia RM, Gairdner D, Doe WF: IgA deficiency in one of identical twins. BMJ 1:311–313, 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Wilton AN, Cobain TJ, Dawkins RL: Family studies of IgA deficiency. Immunogenetics 21:333–342, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Schaffer FM, Palermos J, Zhu ZB, Barger BO, Cooper MD, Volanakis JE: Individuals with IgA deficiency and common variable immunodeficiency share polymorphisms of major histocompatibilty complex class III genes. Proc Natl Acad Sci USA 86:8015–8019, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. French MAH, Dawkins RL: Central MHC genes, IgA deficiency and autoimmune disease. Immunol Today 11:271–274, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Alper CA, Marcus-Bagley D, Awdeh Z, Kruskall MS, Eisenbarth GS, Brink SJ, Katz AJ, Stein R, Bing DH, Yunis EJ, Schur PH: Prospective analysis suggests susceptibility genes for deficiencies of IgA and several other immunoglobulins on the [HLA-B8, SC01, DR3] conserved extended haplotype. Tissue Antigens 56:207–216, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Vorechovsky I, Blennow E, Nordenskjöld M, Webster ADB, Hammarström L: A putative susceptibility locus on chromosome 18 is not a major contributor to human selective IgA deficiency: Evidence from meiotic mapping of 83 multiple-case families. J Immunol 163:2236–2242, 1999.

    PubMed  CAS  Google Scholar 

  15. De la Concha EG, Fernandez-Arquero M, Gual L, Vigil P, Martinez A, Urcelay E, Ferreira A, Garcia-Rodriguez MC, Fontan G: MHC susceptibility genes to IgA deficiency are located in different regions on different haplotypes. J Immunol 169:4637–4643, 2002.

    PubMed  CAS  Google Scholar 

  16. Truedsson L, Baskin B, Pan Q, Rabbani H, Vorechovsky I, Smith CIE, Hammarström L: Genetics of IgA deficiency. APMIS 103:833–842, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Islam KB, Baskin B, Nilsson L, Hammarström L, Sideras P, Smith CIE: Molecular analysis of IgA deficiency. J Immunol 152:1442–1452, 1994.

    PubMed  CAS  Google Scholar 

  18. Wang Z, Yunis D, Irigoyen M, Kitchens B, Bottaro A, Alt FW, Alper CA: Discordance between IgA switching at the DNA level and IgA expression at the mRNA level in IgA-deficient patients. Clin Immunol 91:263–270, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Brière F, Bridon JM, Chevet D, Souillet G, Bienvenu F, Guret C, Martinez-Valdez H, Banchereau J: Interleukin 10 induces B lymphocytes from IgA-deficient patients to secrete IgA. J Clin Invest 94:97–104, 1994.

    Article  PubMed  Google Scholar 

  20. Schultze JL, Cardoso AA, Freeman GJ, Seamon MJ, Daley J, Pinkus GS, Gribben JG, Nadler LN: Follicular lymphomas can be induced to present alloantigen efficiently: A conceptual model to improve their tumor immunogenecity. Proc Natl Acad Sci USA 92:8200–8204, 1995.

    Article  PubMed  CAS  Google Scholar 

  21. Miller G, Lipman M: Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci USA 70:190–194, 1973.

    Article  PubMed  CAS  Google Scholar 

  22. Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM: Yama/CPP32b, a mammalian homolog of CED-3, is a crm-A-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 81:801–809, 1995.

    Article  PubMed  CAS  Google Scholar 

  23. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, Elliston KO, Ayala JM, Casano FJ, Chin J, Egger LA, Gaffney EP, Limjuco G, Palyha OC, Faju SM, Rolando AM, Salley JP, Yamin TT, Lee TD, Shively JE, MacCross M, Mumford RA, Scmidt JA, Tocci MJ: A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774, 1992.

    Article  PubMed  CAS  Google Scholar 

  24. Shi L, Chen G, MacDonald G, Bergeron L, Li H, Miura M, Rotello RJ, Miller DK, Li P, Seshadri T, Yuan J, Greenberg AH: Activation of an interleukin-1 converting enzyme-dependent apoptosis pathway by granzyme B. Proc Natl Acad Sci USA 93:11002–11007, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Cohen GM: Caspases: the executioners of apoptosis. Biochem J 326:1–16, 1997.

    PubMed  CAS  Google Scholar 

  26. Thornberry NA, Lazebnik Y: Caspases: Enemies within. Science 28:1312–1316, 1998.

    Article  Google Scholar 

  27. Gu Y, Wu J, Faucheu C, Lalanne JL, Diu A, Livingston DJ, Su MS: Interleukin-1 beta converting enzyme requires oligomerization for activity of processed forms in vivo. EMBO J 14:1923–1931, 1995.

    PubMed  CAS  Google Scholar 

  28. Cryns V, Yuan J: Proteases to die for. Genes Dev 12:1551–1570, 1998.

    Article  PubMed  CAS  Google Scholar 

  29. Zheng TS, Hunot S, Kuida K, Flavell RA: Caspase knockouts: matters of life and death. Cell Death Differ 6:1043–1053, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Los M, Wesselborg S, Schulze-Osthoff K: The role of caspases in development, immunity and apoptotic signal transduction: lessons from knockout mice. Immunity 10:629–633, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J: Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660, 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, Salvesen G: Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 269:19331–19337, 1994.

    PubMed  CAS  Google Scholar 

  33. Muguruma K, Nakata B, Yanagawa K, Nitta A, Yashiro M, Onoda N, Hirakawa K: Caspase-1 activity as a possible predictor of apoptosis induced by cisplatin in gastric cancer cells. Int J Mol Med 6:553–557, 2000.

    PubMed  CAS  Google Scholar 

  34. Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, Zychlinsky A: Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273:32895–32900, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Li S-H, Lam S, Cheng AL, Li X-J: Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Hum Mol Genet 9:2859–2867, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Aiba-Masago S, Masago R, Vela-Roch N, Talal N, Dang H: Fas-mediated apoptosis in a rat acinar cell line is dependent on caspase-1 activity. Cell Signal 13:617–624, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Zhou X, Gordon SA, Kim Y-M, Hoffman RA, Chen Y, Zhang X-R, Simmons RL, Ford HR: Nitric oxide induces thymocyte apoptosis via a caspase-1-dependent mechanism. J Immunol 165:1252–1258, 2000.

    PubMed  CAS  Google Scholar 

  38. Rowe SJ, Allen L, Ridger VC, Hellewell PG, Whyte MKB: Caspase-1-deficient mice have delayed neutrophil apoptosis and a prolonged inflammatory response to lipopolysaccharide-induced acute lung injury. J Immunol 169:6402–6407, 2002.

    Google Scholar 

  39. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765, 2001.

    Article  PubMed  CAS  Google Scholar 

  40. Defrance T, Vanbervliet B, Brière F, Durand I, Rousset F, Banchereau J: Interleukin 10 and transforming growth factor beta cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J Exp Med 175:671–682, 1992.

    Article  PubMed  CAS  Google Scholar 

  41. Levan-Petit I, Lelievre E, Barra A, Limosin A, Gombert B, Preud'homme JL, Lecron JC: T(h)2 cytokine dependence of IgD production by normal human B cells. Int Immunol 11:1819–1828, 1999.

    Article  PubMed  CAS  Google Scholar 

  42. Zan H, Cerutti A, Dramitinos P, Schaffer A, Casali P: CD40 engagement triggers switching to IgA1 and IgA2 in human B cells through induction of endogenous TGF-beta: Evidence for TGF-beta but not IL-10-dependent direct S mu → S alpha and sequential S mu → S gamma, S gamma → S alpha DNA recombination. J Immunol 161:5217–5225, 1998.

    PubMed  CAS  Google Scholar 

  43. Groux H, Cottrez F, Rouleau M, Mauze S, Antonenko S, Hurst S, McNeil T, Bigler M., Roncarolo MG, Coffman RL: A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J Immunol 162:1723–1729, 1999.

    PubMed  CAS  Google Scholar 

  44. Stampfli MR, Cwiartka M, Gajewska BU, Alvarez D, Ritz SA, Inman MD, Xing Z, Jordana M: Interleukin-10 gene transfer to the airway regulates allergic mucosal sensitization in mice. Am J Respir Cell Mol Biol 21:586–596, 1999.

    PubMed  CAS  Google Scholar 

  45. Tournoy KG, Kips JC, Pauwels RA: Endogenous interleukin-10 suppresses allergen-induced airway inflammation and nonspecific airway responsiveness. Clin Exp Allergy 30:775–783, 2000.

    Article  PubMed  CAS  Google Scholar 

  46. Levy Y, Brouet JC: Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the Bcl-2 protein. J Clin Invest 93:424–428, 1994.

    Article  PubMed  CAS  Google Scholar 

  47. Itoh K, Hirohata S: The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol 154:4341–4350, 1995.

    PubMed  CAS  Google Scholar 

  48. Kindler V, Zubler RH: Memory, but not naïve, peripheral blood B lymphocytes differentiate into Ig-secreting cells after CD40 ligation and costimulation with IL-4 and the differentiation factors IL-2, IL-10, and IL-3. J Immunol 159:2085–2090, 1997.

    PubMed  CAS  Google Scholar 

  49. Dadgostar H, Zarnegar B, Hoffmann A, Qin XF, Truong U, Rao G, Baltimore D, Cheng G: Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proc Natl Acad Sci USA 99:1497–1502, 2002.

    Article  PubMed  CAS  Google Scholar 

  50. Jelinek DF, Lipsky PE: The role of B cell proliferation in the generation of immunoglobulin-secreting cells in man. J Immunol 130:2597–2604, 1983.

    PubMed  CAS  Google Scholar 

  51. O'Connor BP, Cascalho M, Noelle RJ: Short-lived and long-lived bone marrow plasma cells are derived from a common precursor population. J Exp Med 195:737–745, 2002.

    Article  PubMed  Google Scholar 

  52. Ballow M: Primary immunodeficiency disorders: Antibody deficiency. J Allergy Clin Immunol 109:581–591, 2002.

    Article  PubMed  CAS  Google Scholar 

  53. Andjelic S, Liou H-C: Antigen receptor-induced B lymphocyte apoptosis mediated via a protease of the caspase family. Eur J Immunol 28:570–581, 1998.

    Article  PubMed  CAS  Google Scholar 

  54. Salvesen GS, Duckett CS: Apoptosis, IAP proteins: Blocking the road to death's door. Nat Rev Mol Cell Biol 3:401–410, 2002.

    Article  PubMed  CAS  Google Scholar 

  55. Duhen T, Pasero C, Mallet F, Barbarat B, Olive D, Costello RT: LIGHT costimulates CD40 triggering and induces immunoglobulin secretion; a novel key partner in T cell dependent B cell terminal differentiation. Eur J Immunol 34:3534–3541, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We sincerely thank Drs Keith Crawford, Devendra Dubey, Charles Larsen and Judy Lieberman for their review of the manuscript and numerous discussions and suggestions. This work was supported by grant HL-29583 from the National Heart, Lung and Blood Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chester A. Alper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husain, Z., Holodick, N., Day, C. et al. Increased Apoptosis of CD20+ IgA+ B Cells is the Basis for IgA Deficiency: The Molecular Mechanism for Correction In Vitro by IL-10 and CD40L. J Clin Immunol 26, 113–125 (2006). https://doi.org/10.1007/s10875-006-9001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-006-9001-y

KEY WORDS:

Navigation