Skip to main content
Log in

Photochemical activation of chlorine by iron-oxide aerosol

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The photochemical activation of chlorine by dissolved iron in artificial sea-salt aerosol droplets and by highly dispersed iron oxide (Fe2O3) aerosol particles (mainly hematite, specific surface ~150 m2 g−1) exposed to gaseous HCl, was investigated in humidified air in a Teflon simulation chamber. Employing the radical-clock technique, we quantified the production of gaseous atomic chlorine (Cl) from the irradiated aerosol. When the salt aerosol contained Fe2O3 at pH 6, no significant Cl production was observed, even if the dissolution of iron was forced by “weathering” (repeatedly freezing and thawing for five times). Adjusting the pH in the stock suspension to 2.6, 2.2, and 1.9 and equilibrating for one week resulted in a quantifiable amount of dissolved iron (0.03, 0.2, and 0.6 mmol L−1, respectively) and in gaseous Cl production rates of ~1.6, 6, and 8 × 1021 atoms cm−2 h−1, respectively. In a further series of experiments, the pure Fe2O3 aerosol was exposed to various levels of gaseous hydrogen chloride (HCl). The resulting Cl production rates ranged from 8 × 1020 Cl atoms cm−2 h−1 (at ~4 ppb HCl) to 5 × 1022 Cl atoms cm−2 h−1 (at ~350 ppb HCl) and confirmed the uptake and conversion of HCl to atomic Cl (at HCl to Cl conversion yields of 2–5 %, depending on the relative humidity). The Fe2O3 experiments indicate that iron-induced Cl formation may be important for highly soluble combustion-aerosol particles in marine environments in the presence of gaseous HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Abadleh, H.A.: Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Adv. (2015). doi:10.1039/C5RA03132J

    Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume III – Gas phase reactions of inorganic halogens. Atmos. Chem. Phys. (2007). doi:10.5194/acp-7-981-2007

    Google Scholar 

  • Baker, A.R., Croot, P.L.: Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. (2010). doi:10.1016/j.marchem.2008.09.003

    Google Scholar 

  • Baker, A.R., Jickells, T.D., Witt, M., Linge, K.L.: Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. (2006). doi:10.1016/j.marchem.2005.06.004

    Google Scholar 

  • Balzer, N.: Kinetische Untersuchungen der Halogen-Aktivierung einer simulierten Salzpfanne in einer Smogkammer, PhD thesis. University of Bayreuth, Germany (2012). https://epub.uni-bayreuth.de/162/

  • Bartolomei, V., Gomez Alvarez, E., Wittmer, J., Tlili, S., Strekowski, R., Temime-Roussel, B., Quivet, E., Wortham, H., Zetzsch, C., Kleffmann, J., Gligorovski, S.: Combustion processes as a source of high levels of indoor hydroxyl radicals through the photolysis of nitrous acid. Environ. Sci. Technol. (2015). doi:10.1021/acs.est.5b01905

    Google Scholar 

  • Behnke, W., Zetzsch, C.: The generation of radicals on aerosol surfaces. Air Poll. Res. Rep. 17, 119–124 (1988)

    Google Scholar 

  • Behnke, W., Zetzsch, C.: Heterogeneous production of Cl atoms under simulated tropospheric conditions in a smog chamber. In: Restelli, G., Angeletti, G. (eds.) Physico-Chemical Behaviour of Atmospheric Pollutants, pp. 277–282. Springer, Dordrecht (1990)

    Chapter  Google Scholar 

  • Behnke, W., Holländer, W., Koch, W., Nolting, F., Zetzsch, C.: A smog chamber for studies of the photochemical degradation of chemicals in the presence of aerosols. Atmos. Environ. (1988). doi:10.1016/0004-6981(88)90341-1

    Google Scholar 

  • Bleicher, S., Buxmann, J.C., Sander, R., Riedel, T.P., Thornton, J.A., Platt, U., Zetzsch, C.: The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol. Atmos. Chem. Phys. Discuss. (2014). doi:10.5194/acpd-14-10135-2014

    Google Scholar 

  • Buxmann, J., Balzer, N., Bleicher, S., Platt, U., Zetzsch, C.: Observations of bromine explosions in smog chamber experiments above a model salt pan. Int. J. Chem. Kinet. (2012). doi:10.1002/kin.20714

    Google Scholar 

  • Buxmann, J., Bleicher, S., Platt, U., von Glasow, R., Sommariva, R., Held, A., Zetzsch, C., Ofner, J.: Consumption of reactive halogen species from sea-salt aerosol by secondary organic aerosol: slowing down bromine explosion. Environ. Chem. (2015). doi:10.1071/EN14226

    Google Scholar 

  • Byrne, R.H., Kester, D.R.: Solubility of hydrous ferric oxide and iron speciation in seawater. Mar. Chem. (1976). doi:10.1016/0304-4203(76)90012-8

    Google Scholar 

  • Cwiertny, D.M., Young, M.A., Grassian, V.H.: Chemistry and photochemistry of mineral dust aerosol. Annu. Rev. Phys. Chem. (2008). doi:10.1146/annurev.physchem.59.032607.093630

    Google Scholar 

  • Delmelle, P., Lambert, M., Dufrêne, Y., Gerin, P., Óskarsson, N.: Gas/aerosol–ash interaction in volcanic plumes: new insights from surface analyses of fine ash particles. Earth Planet. Sci. Lett. (2007). doi:10.1016/j.epsl.2007.04.052

    Google Scholar 

  • Duce, R.A., Tindale, N.W.: Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceangr. (1991). doi:10.4319/lo.1991.36.8.1715

    Google Scholar 

  • Duggen, S., Croot, P., Schacht, U., Hoffmann, L.: Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. (2007). doi:10.1029/2006GL027522

    Google Scholar 

  • Erickson, D.J., Seuzaret, C., Keene, W.C., Gong, S.L.: A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: reactive chlorine emissions inventory. J. Geophys. Res. (1999). doi:10.1029/98JD01384

    Google Scholar 

  • Gliß, J., Bobrowski, N., Vogel, L., Pöhler, D., Platt, U.: OClO and BrO observations in the volcanic plume of Mt. Etna – implications on the chemistry of chlorine and bromine species in volcanic plumes. Atmos. Chem. Phys. (2015). doi:10.5194/acp-15-5659-2015

    Google Scholar 

  • Graedel, T.E., Keene, W.C.: The budget and cycle of earth’s natural chlorine. Pure Appl. Chem. (1996). doi:10.1351/pac199668091689

    Google Scholar 

  • Herrmann, H., Majdik, Z., Ervens, B., Weise, D.: Halogen production from aqueous tropospheric particles. Chemosphere (2003). doi:10.1016/S0045-6535(03)00202-9

    Google Scholar 

  • Ito, A., Feng, Y.: Role of dust alkalinity in acid mobilization of iron. Atmos. Chem. Phys. (2010). doi:10.5194/acp-10-9237-2010

    Google Scholar 

  • Jeong, D., Kim, K., Choi, W.: Accelerated dissolution of iron oxides in ice. Atmos. Chem. Phys. (2012). doi:10.5194/acp-12-11125-2012

    Google Scholar 

  • Jickells, T.D., Spokes, L.J.: Atmospheric iron inputs to the oceans. IUPAC Ser. Analytical Phys. Chem. Environ. Syst. 7, 85–122 (2001)

    Google Scholar 

  • Keene, W.C., Savoie, D.L.: The pH of deliquesced sea-salt aerosol in polluted marine air. Geophys. Res. Lett. (1998). doi:10.1029/98GL01591

    Google Scholar 

  • Keene, W.C., Sander, R., Pszenny, A.A., Vogt, R., Crutzen, P.J., Galloway, J.N.: Aerosol pH in the marine boundary layer. J. Aerosol Sci. (1998). doi:10.1016/S0021-8502(97)10011-8

    Google Scholar 

  • Keene, W.C., Khalil, M., Aslam, K., Erickson, D.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., Midgley, P., Moore, R.M., Seuzaret, C., Sturges, W.T., Benkovitz, C.M., Koropalov, V., Barrie, L.A., Li, Y.F.: Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory. J. Geophys. Res. (1999). doi:10.1029/1998JD100084

    Google Scholar 

  • Kester, D.R., Duedall, I.W., Connors, D.N., Pytkowicz, R.M.: Preparation of artificial seawater. Limnol. Oceangr. (1967). doi:10.4319/lo.1967.12.1.0176

    Google Scholar 

  • Kiwi, J., Lopez, A., Nadtochenko, V.: Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl). Environ. Sci. Technol. (2000). doi:10.1021/es991406i

    Google Scholar 

  • Knipping, E.M., Lakin, M.J., Foster, K.L., Jungwirth, P., Tobias, D.J., Gerber, R.B., Dabdub, D., Finlayson-Pitts, B.J.: Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science (2000). doi:10.1126/science.288.5464.301

    Google Scholar 

  • Kolb, C.E., Cox, R.A., Abbatt, J.P.D., Ammann, M., Davis, E.J., Donaldson, D.J., Garrett, B.C., George, C., Griffiths, P.T., Hanson, D.R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M.J., Rudich, Y., Wagner, P.E., Winkler, P.M., Worsnop, D.R., O’ Dowd, C.D.: An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. (2010). doi:10.5194/acp-10-10561-2010

    Google Scholar 

  • Kuma, K., Nishioka, J.U., Matsunaga, K.: Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol. Oceangr. (1996). doi:10.4319/lo.1996.41.3.0396

    Google Scholar 

  • Lim, M., Chiang, K., Amal, R.: Photochemical synthesis of chlorine gas from iron(III) and chloride solution. J. Photochem. Photobiol., A (2006). doi:10.1016/j.jphotochem.2006.03.005

    Google Scholar 

  • Liu, X., Millero, F.J.: The solubility of iron in seawater. Mar. Chem. (2002). doi:10.1016/S0304-4203(01)00074-3

    Google Scholar 

  • Luo, C., Mahowald, N., Bond, T., Chuang, P.Y., Artaxo, P., Siefert, R., Chen, Y., Schauer, J.: Combustion iron distribution and deposition. Glob Biogeochem. Cycles (2008). doi:10.1029/2007GB002964

    Google Scholar 

  • Machulek, A., Vautier-Giongo, C., Moraes, J.E.F., Nascimento, C.A.O., Quina, F.H.: Laser flash photolysis study of the photocatalytic step of the photo-Fenton reaction in saline solution. J. Photochem. Photobiol. (2006). doi:10.1562/2005-05-28-RA-548

    Google Scholar 

  • Machulek, A., Moraes, J.E.F., Vautier-Giongo, C., Silverio, C.A., Friedrich, L.C., Nascimento, C.A.O., Gonzalez, M.C., Quina, F.H.: Abatement of the inhibitory effect of chloride anions on the photo-Fenton process. Environ. Sci. Technol. (2007). doi:10.1021/es071884q

    Google Scholar 

  • Mahowald, N.M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P.Y., Cohen, D.D., Dulac, F., Herut, B., Johansen, A.M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J.M., Shank, L.M., Siefert, R.L.: Atmospheric iron deposition: global distribution, variability, and human perturbations. Ann. Rev. Mar. Sci. (2009). doi:10.1146/annurev.marine.010908.163727

    Google Scholar 

  • Meskhidze, N.: Dust and pollution: a recipe for enhanced ocean fertilization? J. Geophys. Res. (2005). doi:10.1029/2004JD005082

    Google Scholar 

  • Miller, W.L., King, D., Lin, J., Kester, D.R.: Photochemical redox cycling of iron in coastal seawater. Mar. Chem. (1995). doi:10.1016/0304-4203(95)00027-O

    Google Scholar 

  • Nadtochenko, V.A., Kiwi, J.: Photolysis of FeOH2+ and FeCl2+ in aqueous solution. Photodissociation kinetics and quantum yields. Inorg. Chem. (1998). doi:10.1021/ic9804723

    Google Scholar 

  • Pignatello, J.J., Liu, D., Huston, P.: Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ. Sci. Technol. (1999). doi:10.1021/es980969b

    Google Scholar 

  • Prescher, C., McCammon, C., Dubrovinsky, L., Moss, A.: A program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J. Appl. Crystallogr. (2012). doi:10.1107/S0021889812004979

    Google Scholar 

  • Rossi, M.J.: Heterogeneous reactions on salts. Chem. Rev. 103, 4823–4882 (2003)

    Article  Google Scholar 

  • Rubasinghege, G., Lentz, R.W., Scherer, M.M., Grassian, V.H.: Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. Proc. Natl. Acad. Sci. U. S. A. (2010). doi:10.1073/pnas.0910809107

    Google Scholar 

  • Santschi, C., Rossi, M.J.: Uptake of CO2, SO2, HNO3 and HCl on calcite (CaCO3) at 300 K: mechanism and the role of adsorbed water. J. Phys. Chem. A (2006). doi:10.1021/jp056312b

    Google Scholar 

  • Schroth, A.W., Crusius, J., Sholkovitz, E.R., Bostick, B.C.: Iron solubility driven by speciation in dust sources to the ocean. Nat. Geosci. (2009). doi:10.1038/ngeo501

    Google Scholar 

  • Sedwick, P.N., Sholkovitz, E.R., Church, T.M.: Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem. Geophys. Geosyst. (2007). doi:10.1029/2007GC001586

    Google Scholar 

  • Shi, Z., Krom, M.D., Bonneville, S., Baker, A.R., Jickells, T.D., Benning, L.G.: Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing. Environ. Sci. Technol. (2009). doi:10.1021/es901294g

    Google Scholar 

  • Shi, Z., Krom, M.D., Jickells, T.D., Bonneville, S., Carslaw, K.S., Mihalopoulos, N., Baker, A.R., Benning, L.G.: Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review. Aeolian Res. (2012). doi:10.1016/j.aeolia.2012.03.001

    Google Scholar 

  • Sholkovitz, E.R., Sedwick, P.N., Church, T.M., Baker, A.R., Powell, C.F.: Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Ac. (2012). doi:10.1016/j.gca.2012.04.022

    Google Scholar 

  • Siefert, R.L., Johansen, A.M., Hoffmann, M.R., Pehkonen, S.O.: Measurements of trace metal (Fe, Cu, Mn, Cr) oxidation states in fog and stratus clouds. J. Air Waste Manag. Assoc. (1998). doi:10.1080/10473289.1998.10463659

    Google Scholar 

  • Sullivan, R.C., Guazzotti, S.A., Sodeman, D.A., Prather, K.A.: Direct observations of the atmospheric processing of Asian mineral dust. Atmos. Chem. Phys. (2007a). doi:10.5194/acp-7-1213-2007

    Google Scholar 

  • Sullivan, R.C., Guazzotti, S.A., Sodeman, D.A., Tang, Y., Carmichael, G.R., Prather, K.A.: Mineral dust is a sink for chlorine in the marine boundary layer. Atmos. Environ. (2007b). doi:10.1016/j.atmosenv.2007.05.047

    Google Scholar 

  • Supeno, Supeno, P.: Sonochemical formation of nitrate and nitrite in water. Ultrason. Sonochem. (2000). doi:10.1016/S1350-4177(99)00043-7

    Google Scholar 

  • Svensson, R., Ljungström, E., Lindqvist, O.: Kinetics of the reaction between nitrogen dioxide and water vapour. Atmos. Environ. (1987). doi:10.1016/0004-6981(87)90315-5

    Google Scholar 

  • Tilgner, A., Bräuer, P., Wolke, R., Herrmann, H.: Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i. J. Atmos. Chem. (2013). doi:10.1007/s10874-013-9267-4

    Google Scholar 

  • Tobo, Y., Zhang, D., Nakata, N., Yamada, M., Ogata, H., Hara, K., Iwasaka, Y.: Hygroscopic mineral dust particles as influenced by chlorine chemistry in the marine atmosphere. Geophys. Res. Lett. (2009). doi:10.1029/2008GL036883

    Google Scholar 

  • Tobo, Y., Zhang, D., Matsuki, A., Iwasaka, Y.: Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions. Proc. Natl. Acad. Sci. U. S. A. (2010). doi:10.1073/pnas.1008235107

    Google Scholar 

  • Vogt, R., Crutzen, P.J., Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature (1996). doi:10.1038/383327a0

    Google Scholar 

  • Wahner, A., Mentel, T.F., Sohn, M.: Gas-phase reaction of N2O5 with water vapor: Importance of heterogeneous hydrolysis of N2O5 and surface desorption of HNO3 in a large Teflon chamber. Geophys. Res. Lett. (1998). doi:10.1029/98GL51596

    Google Scholar 

  • Wang, W.-N., Purwanto, A., Lenggoro, I.W., Okuyama, K., Chang, H., Jang, H.D.: Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Ind. Eng. Chem. Res. (2008). doi:10.1021/ie070821d

    Google Scholar 

  • Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., Hauglustaine, D., Peñuelas, J., Tao, S.: Sources, transport and deposition of iron in the global atmosphere. Atmos. Chem. Phys. (2015). doi:10.5194/acp-15-6247-2015

    Google Scholar 

  • Wittmer, J., Bleicher, S., Zetzsch, C.: Iron(III)-induced activation of chloride and bromide from modeled saltpans. J. Phys. Chem. A (2015a). doi:10.1021/jp508006s

    Google Scholar 

  • Wittmer, J., Bleicher, S., Ofner, J., Zetzsch, C.: Iron(III)-induced activation of chloride from artificial sea salt aerosol. Environ. Chem. (2015b). doi:10.1071/EN14279

    Google Scholar 

  • Zetzsch, C., Behnke, W.: Heterogeneous reactions of chlorine compounds. In: Niki, H., Becker, K.H. (eds.) The Tropospheric Chemistry of Ozone in the Polar Regions, pp. 291–306. Springer, Berlin Heidelberg (1993)

    Chapter  Google Scholar 

  • Zetzsch, C.: Simulation of atmospheric photochemistry in the presence of solid airborne aerosols. In: Dechema-Monographien, vol 104. pp 187–213. Verlag Chemie, Weinheim, Germany (1987)

  • Zhang, D., Iwasaka, Y.: Chlorine deposition on dust particles in marine atmosphere. Geophys. Res. Lett. (2001). doi:10.1029/2001GL013333

    Google Scholar 

  • Zhu, X., Prospero, J.M., Millero, F.J., Savoie, D.L., Brass, G.W.: The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities. Mar. Chem. (1992). doi:10.1016/0304-4203(92)90069-M

    Google Scholar 

  • Zhu, X., Prospero, J.M., Savoie, D.L., Millero, F.J., Zika, R.G., Saltzman, E.S.: Photoreduction of iron(III) in marine mineral aerosol solutions. J. Geophys. Res. (1993). doi:10.1029/93JD00202

    Google Scholar 

  • Zhuang, G., Yi, Z., Duce, R.A., Brown, P.R.: Chemistry of iron in marine aerosols. Glob. Biogeochem. Cycles (1992). doi:10.1029/92GB00756

    Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Catherine McCammon, BGI Bayreuth, Germany, for the Mössbauer spectroscopy of our samples, Johannes Thiessen for the BET analysis, Dipl.-Ing. Franz D. Oeste and Dr. Sergej Bleicher for advice, and Agnes Bednorz and Andrej Einhorn for technical support. This work was supported by the German Research Foundation (DFG) within research unit 763 (HALOPROC) grant ZE792/5-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julian Wittmer or Cornelius Zetzsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittmer, J., Zetzsch, C. Photochemical activation of chlorine by iron-oxide aerosol. J Atmos Chem 74, 187–204 (2017). https://doi.org/10.1007/s10874-016-9336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-016-9336-6

Keywords

Navigation