Skip to main content
Log in

Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the Puy de Dôme station

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The Model of Multiphase Cloud Chemistry M2C2 has recently been extended to account for nucleation scavenging of aerosol particles in the cloud water chemical composition. This extended version has been applied to multiphase measurements available at the Puy de Dôme station for typical wintertime anthropogenic air masses. The simulated ion concentrations in cloud water are in reasonable agreement with the experimental data. The analysis of the sources of the chemical species in cloud water shows an important contribution from nucleation scavenging of particles which prevails for nitrate, sulphate and ammonium. Moreover, the simulation shows that iron, which comes only from the dissolution of aerosol particles in cloud water, has a significant contribution in the hydroxyl radical production. Finally, the simulated phase partitioning of chemical species in cloud are compared with measurements. Numerical results show an underestimation of interstitial particulate phase fraction with respect to the measurements, which could be due to an overestimation of activated mass by the model. However, the simulated number scavenging efficiency of particles agrees well with the measured value of 40% of total number of aerosol particles activated in cloud droplets. Concerning the origin of chemical species in cloud water, the model reproduces quite well the contribution of gas and aerosol scavenging estimated from measurements. In addition, the simulation provides the contribution of in-cloud chemical reactivity to cloud water concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Razzak, H., Ghan, S.J.: A parameterization of aerosol activation. II. Multiple aerosol types. J. Geophys. Res. 105, 6837–6844 (2000)

    Article  Google Scholar 

  • Abdul-Razzak, H., Ghan, S.J.: Parameterization of the influence of organic surfactants on aerosol activation. J. Geophys. Res. 109, D03205, doi:10.1029/2003JD004043 (2004)

    Article  Google Scholar 

  • Abdul-Razzak, H., Ghan, S.J., Rivera-Carpio, C.: A parameterization of aerosol activation. I. Single aerosol type. J. Geophys. Res. 103, 6123–6131 (1998)

    Article  Google Scholar 

  • Amato, P., Ménager, M., Sancelme, M., Laj, P., Mailhot, G., Delort, A.-M.: Microbial population in cloud water at the Puy de Dôme: implications for the chemistry of clouds. Atmos. Environ. 39, 4143–4153 (2005)

    Article  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of O x , HO x , NO x and SO x species. Atmos. Chem. Phys. 4, 1461–1738 (2004)

    Article  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species. Atmos. Chem. Phys. 6, 3625–4055 (2006)

    Google Scholar 

  • Barth, M.C., Hess, P.G., Madronich, S.: Effect of marine boundary layer clouds on tropospheric chemistry as analyzed in a regional chemistry transport model. J. Geophys. Res. 107, doi:10.1029/2001JD000468 (2002)

  • Blando, J.D., Turpin, B.J.: Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos. Environ. 34, 1623–1632 (2000)

    Article  Google Scholar 

  • Buxton, G.V., Salmon, G.A., Williams, J.E.: The reactivity of oxalate towards oxy-sulphur free-radicals in aqueous solution. In: Becker K.H., Angeletti G. (eds.) Air Pollution Research Report 67: Chemical mechanism of atmospheric processes, pp. 357–361. Office for Official Publications of the European Communities, Luxembourg (1999)

    Google Scholar 

  • Carlton, A.G., Turpin, B.J., Lim, H.-J., Altieri, K.E., Seitzinger, S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds. Geophys. Res. Lett. 33, L06822 doi:10.1029/2005GL025374 (2006)

    Article  Google Scholar 

  • Caro, D., Wobrock, W., Flossmann, A.I., Chaumerliac, N.: A two-moment parameterization of aerosol nucleation and impaction scavenging for a warm cloud microphysics: description and results from a two-dimensional simulation. Atmos. Res. 70, 171–208 (2004)

    Article  Google Scholar 

  • Clark, T.L., Hall, W.D.: Multi-domain simulations of the timed dependent Navier–Stokes equations: benchmark error analysis of some nesting procedure. J. Comp. Phys. 92, 456–481 (1991)

    Article  Google Scholar 

  • Deguillaume, L., Leriche, M., Monod, A., Chaumerliac, N.: The role of transition metal ions on HO x radicals in clouds: a numerical evaluation of its impact on multiphase chemistry. Atmos. Chem. Phys. 4, 95–110 (2004)

    Google Scholar 

  • Deguillaume, L., Leriche, M., Desboeufs, K., Mailhot, G., Georges, C., Chaumerliac, N.: Transition metals in atmospheric liquid phases: sources, reactivity and sensitive parameters. Chem. Rev. 105, 3388–3431 (2005)

    Article  Google Scholar 

  • Dentener, F., Williams, J., Metzger, S.: Aqueous phase reaction of HNO4: the impact on tropospheric chemistry. J. Atmos. Chem. 41, 109–133 (2002)

    Article  Google Scholar 

  • Desboeufs, K.V., Sofikitis, A., Losno, R., Colin, J.L., Ausset, P.: Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. Chemosphere 58, 195–203 (2005)

    Article  Google Scholar 

  • Ervens, B., George, C., Williams, J.E., Buxton, G.V., Salmon, G.A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., Herrmann, H.: CAPRAM2.4 (MODAC mechanism): an extended and condensed tropospheric aqueous phase mechanism and its application. J. Geophys. Res. 108, 4426 doi:10.1029/2002JD002202 (2003)

    Article  Google Scholar 

  • Ervens, B., Feingold, G., Frost, G.J., Kreidenweis, S.M.: A modeling study of aqueous production of dicarboxylic acids: I. Chemical pathways and speciated organic mass production. J. Geophys. Res. 109, D15205, doi:10.1029/2003JD004387 (2004)

    Article  Google Scholar 

  • Faust, B.C., Zepp, R.G.: Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27, 2517–2522 (1993)

    Article  Google Scholar 

  • Feingold, G., Kreidenweis, S.M.: Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J. Geophys. Res. 107, 4687, doi:10.1029/2002JD002054 (2002)

    Article  Google Scholar 

  • Flossmann, A.I.: The scavenging of two different types of marine aerosol particles using a two-dimensional detailed cloud model. Tellus 43B, 301–321 (1991)

    Google Scholar 

  • Fuzzi, S., Andreae, M.O., Huebert, B.J., Kulmala, M., Bond, T.C., Boy, M., Doherty, S.J., Guenther, A., Kanakidou, M., Kawamura, K., Kerminen, V.-M., Lohmann, U., Russell, L.M., Pöschl, U.: Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 6, 2017–2038 (2006)

    Google Scholar 

  • Gelencsér, A., Varga, Z.: Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation. Atmos. Chem. Phys. 5, 2823–2831 (2005)

    Google Scholar 

  • Gérémy, G., Wobrock, W., Flossmann, A.I., Schwarzenböck A., Mertes, S.: A modelling study on the activation of small Aitken-mode aerosol particles during CIME 97. Tellus 52B, 959–979 (2000)

    Google Scholar 

  • Getoff, N., Schwoerer, F., Markovic, V.M., Sehested, K., Nielsen, S.O.: Pulse radiolysis of oxalic acid and oxalates. J. Phys. Chem. 75, 749–755 (1971)

    Article  Google Scholar 

  • Köhler, H.: The nucleus in the growth of hygroscopic droplets.Trans. Faraday Soc. 32, 1152–1161 (1936)

    Article  Google Scholar 

  • Kreidenweis, S.M., Walcek, C.J., Feingold, G., Gong, W., Jacobson, M.Z., Kim, C.-H., Liu, X., Penner, J.E., Nenes, A., Seinfeld, J.H.: Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds: comparisons of several models. J. Geophys. Res. 108, 4213, doi:10.1029/2002JD002697 (2003)

    Article  Google Scholar 

  • Kruisz, C., Berner, A., Branntner, B.: A cloud water samples for high wind speeds. In: Borell, P.M., Borell, P., Cvitas, T., Seiler W. (eds.) Proc. EUROTRAC Symposium 92, pp. 523–525. SPB Academic, The Hague (1993)

    Google Scholar 

  • Legrand, M., Preunkert, S., Galy-Lacaux, C., Liousse, C., Wagenbach, D.: Atmospheric year-round records of dicarboxylic acids and sulfate at three French sites located between 630 and 4360 m elevation. J. Geophys. Res. 110, D13302, doi:10.1029/2004JD005515 (2005)

    Article  Google Scholar 

  • Lelieveld, J., Crutzen, P.J.: The role of clouds in tropospheric photochemistry. J. Atmos. Chem. 12, 229–267 (1991)

    Article  Google Scholar 

  • Leriche, M., Voisin, D., Chaumerliac, N., Monod, A., Aumont, B.: A model for tropospheric multiphase chemistry: application to one cloudy event during the CIME experiment. Atmos. Environ. 34, 5015–5036 (2000)

    Article  Google Scholar 

  • Leriche, M., Chaumerliac, N., Monod, A.: Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the Puy de Dôme mountain (France). Atmos. Environ. 35, 5411–5423 (2001)

    Article  Google Scholar 

  • Leriche, M., Deguillaume, L., Chaumerliac, N.: Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime. J. Geophys. Res. 108, 4433, doi:10.1029/2002JD002950 (2003)

    Article  Google Scholar 

  • Liang, J., Jacob, D.J.: Effect of aqueous phase cloud chemistry on tropospheric ozone. J. Geophys. Res. 102, 5993–6002 (1997)

    Article  Google Scholar 

  • Marinoni, A., Laj, P., Sellegri, K., Mailhot, G.: Cloud chemistry at the Puy de Dôme: variablility and relationships with environmental factors. Atmos. Chem. Phys. 4, 715–728 (2004)

    Google Scholar 

  • Martell, A.E., Smith, R.M.: Critical Stability Constants. Volume 3: Other Organic Ligands. Plenum, New York (1977)

    Google Scholar 

  • Moorhead, E.G., Sutin, N.: Rate and equilibrium constants for the formation of the monooxalate complex of iron(III). Inorg. Chem. 5, 1866–1871 (1966)

    Article  Google Scholar 

  • Noone, K.J., Charlson, R.J., Covert, D.S., Ogren, J.A., Heintzenberg, J.: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol. 8, 235–244 (1988)

    Article  Google Scholar 

  • Parazols, M., Marinoni, A., Amato, P., Abida, O., Laj, P., Mailhot, G.: Speciation and role of iron in cloud droplets at the Puy de Dôme station. J. Atmos. Chem. 54, 267–281 (2006)

    Article  Google Scholar 

  • Pruppacher, H.R., Klett, J.D.: Microphysics of Clouds and Precipitation (2nd Ed.), pp. 954, Kluwer, Dordrecht, The Netherlands (1997)

    Google Scholar 

  • Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M.C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., Torseth, K., Wiedensohler, A.: A European aerosol phenomenology. II. chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38, 2561–2577 (2004)

    Article  Google Scholar 

  • Raabe, G.: Eine Laserphotolytische Studie zur Kinetic der Reaktionen des \( NO^{ - }_{3} \) Radikals in Wässriger Lösung. Cuvillier, Göttingen, Germany (1996)

    Google Scholar 

  • Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G.Y., Solomon, S.: Radiative forcing of climate change. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson C.A. (eds) Climate Change 2001: The Scientific Basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, pp. 349–416. Cambridge University Press, New York (2001)

    Google Scholar 

  • Saxena, P., Hildemann, L.M.: Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 24, 57–109 (1996)

    Article  Google Scholar 

  • Schwartz, S. E.: Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid water clouds. In: Jaeschke, W. (ed.) Chemistry of Multiphase Atmospheric System NATO ASI Series G6, pp. 415–471. Springer-Verlag, Berlin (1986)

    Google Scholar 

  • Sellegri, K.: Etude du processus d’activation des gouttelettes de nuage: Implications en chimie multiphases, PhD thesis, Joseph Fourier University, Grenoble, France (2002)

  • Sellegri, K., Laj, P., Peron, F., Dupuy, R., Legrand, M., Preunkert, S., Putaud, J.-P., Cachier H, Ghermandi, G.: Mass balance of free tropospheric aerosol at the Puy de Dôme (France) in winter. J. Geophys. Res. 108, 4333 doi:10.1029/2002JD002747 (2003a)

    Article  Google Scholar 

  • Sellegri, K., Laj, P., Marinoni, A., Dupuy, R., Legrand, M., Preunkert, S.: Contribution of gaseous and particulate species to droplet solute composition at the Puy de Dôme, France. Atmos. Chem. Phys. 3, 1509–1522 (2003b)

    Article  Google Scholar 

  • Sellegri, K., Laj, P., Dupuy, R., Legrand, M., Preunkert, S., Putaud, J.-P.: Size-dependent scavenging efficiencies of multicomponent atmospheric aerosols in clouds. J. Geophys. Res. 108, 4334 doi:10.1029/2002JD002749 (2003c)

    Article  Google Scholar 

  • Smith, R.M., Martell, A.E.: Critical Stability Constants. Volume 4: Inorganic Complexes. Plenum, New York (1976)

    Google Scholar 

  • Sorooshian, A., Varutbangkul, V., Brechtel, F. J., Ervens, B., Feingold, G., Bahreini, R., Murphy, S.M., Holloway, J.S., Atlas, E.L., Buzorius, G., Jonsson, H., Flagan, R. C., Seinfeld, J.H.: Oxalic acid in clear and cloudy atmospheres: analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004. J. Geophys. Res. 111, D23S45 doi:10.1029/2005JD006880 (2006)

    Article  Google Scholar 

  • Van Dingenen, R., Raes, F., Putaud, J.-P., Baltensperger, U., Charron, A., Facchini, M.C., Decesari, S., Fuzzi, S., Gehrig, R., Hansson, H.-C., Harrison, R.M., Hüglin, C., Jones, A.M., Laj, P., Lorbeer, G., Maenhaut, W., Palmgren, F., Querol, X., Rodriguez, S., Schneider, J., ten Brink, H., Tunved, P., Torseth, K., Wehner, B., Weingartner, E., Wiedensohler, A., Wahlin, P.: A European aerosol phenomenology. I. Physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38, 2561–2577 (2004)

    Article  Google Scholar 

  • Voisin, D., Legrand, M., Chaumerliac, N.: Scavenging of acidic gases (HCOOH, CH3COOH, HNO3, HCl, and SO2) and ammonia in mixed liquid–solid water clouds at the Puy de Dôme mountain (France). J. Geophys. Res. 105, 6817–6835 (2000)

    Article  Google Scholar 

  • Williams, J.E., Dentener, F.J., van den Berg, A.R.: The influence of cloud chemistry on HO x and NO x in the moderately polluted marine boundary layer: a 1-D modelling study. Atmos. Chem. Phys. 2, 277–302 (2002)

    Google Scholar 

  • Wobrock, W., Flossmann, A.I., Monier, M., Pichon, J.-M., Cortez, L., Fournol, J.-F., Schwarzenböck, A., Mertes, S., Heintzenberg, J., Laj, P., Orsi, G., Ricci, L., Fuzzi, S., Brink, H.T., Jongejan P., Otjes, R.: The Cloud Ice Mountain Experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion. Atmos. Res. 58, 231–265 (2001)

    Article  Google Scholar 

  • Wolke, R., Sehili, A.M., Simmel, M., Knoth, O., Tilgner, A., Herrmann, H.: SPACCIM: A parcel model with detailed microphysics and complex multiphase chemistry. Atmos. Environ. 39, 4375–4388 (2005)

    Article  Google Scholar 

  • Yin, Y., Carslaw, K.S., Feingold, G.: Vertical transport of aerosols in a mixed-phase convective cloud and the feedback on cloud development. Q. J. R. Meteorol. Soc. 131, 221–245 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Wolfram Wobrock for providing the three dimensional simulation with the Clark model. This work was supported by the “Programme National de Chimie Atmosphérique” (PNCA) of the INSU (Institut des Sciences de l’Univers) and by the ORE-BEAM (“Observatoire de Recherche en Environnement Biophysicochimie de l’Eau Atmosphérique et Modifications anthropiques”) project of the French Ministry for Research and Education. Computer resources were provided by I.D.R.I.S. (Institut du Développement et des Ressources en Informatique Scientifique, project no. 000187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Leriche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leriche, M., Curier, R.L., Deguillaume, L. et al. Numerical quantification of sources and phase partitioning of chemical species in cloud: application to wintertime anthropogenic air masses at the Puy de Dôme station. J Atmos Chem 57, 281–297 (2007). https://doi.org/10.1007/s10874-007-9073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-007-9073-y

Keywords

Navigation