Skip to main content

Advertisement

Log in

Analysis of Air Quality in Eastern China and its Interaction with Other Regions of the World

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

In this study, we used satellite data (GOME and MOPITT) together with a global chemical-transport-model of atmosphere (MOZART-2) to characterize the chemical/aerosol composition over eastern China. We then estimated the effects of local emissions in China on the chemical budgets in other regions of the world. Likewise, we also investigated the effects of air pollution from other regions on the chemical budget over eastern China. The study shows that the column CO and NO x concentrations are also high in eastern China. The high CO and NO x concentrations produce modest levels of O3 concentrations during summer (about 40 to 50 ppbv) and very low O3 during winter (about 10 to 20 ppbv) in eastern China. The calculated NO2 column is fairly consistent from the GOME measurement. The calculated CO column is underestimated from the MOPITT measurement. One of the reasons of the underestimation of the predicted CO is due to a fact that the CO emissions were taken without considering the rapid increase of emissions from 1990 to 2000. The calculated surface O3 is consistent with the measured values, with strong seasonal variations. However, the measurement is very limited, and more measurements in eastern China will be needed. The column NO2 has a very strong seasonal variation in eastern China, with the highest concentrations during winter and the lowest concentrations during summer. The cause of this seasonal variability is mainly due to the seasonal changes in the chemical loss of NO x , which is very high in summer and very low during winter. The effects of the local emissions in China and long-range transport from other regions on the chemical distributions in eastern China are studied. The results show that NO x concentrations in eastern China are mostly caused by the local emissions in China, especially during the winter. The CO concentration over eastern China is from both the local emissions (30% to 40%) and the transport from other regions. Likewise, the CO emissions in China have an important effect on the other regions of the world, but the effect is limited in the northern hemisphere. The local emissions in China also have an important effect on surface O3 concentrations. During winter, the local emissions reduce the surface O3 concentrations by 30 to 50%. During summer, the local emissions produce about 50 to 70% of the O3 concentration in eastern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brasseur, G. P., Hauglustaine, D. A., Walter, S., Muller, J. F., Rasch, P., Granier, C., and Tie, X., 1998: MOZART: A global three-dimensional Chemical-Transport-Model of the atmosphere, J. Geophys. Res. 103, 28,265–28,289.

    Article  Google Scholar 

  • Brasseur, G. P., Orlando, J., Tyndall, G., 1999: Atmospheric Chemistry and Global Change, New Oxford University Press.

  • Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G., Prinn, R. G., Weiss, R. F., Porter, L. W., Langenfelds, R. L., Wang, H. J., Emmons, L., Tie, X., and Dlugokencky, E. J., 2002: GAGE/AGAGE measurements of methane at 5 sites from 1985 to 1999 and source inferences there from, J. Geophys. Res. 107, 10.1029/2001JD001226.

  • Burrows, J. P., et al., 1999: The global ozone monitoring experiment (GOME): Mission concept and first scientific results, J. Atm. Sci. 56, 151–175.

    Article  Google Scholar 

  • Drummond, J. R., 1992: Measurements of pollution in the troposphere (MOPITT), in (eds.), The Use of EOS for Studies of Atmospheric Physics, J. Gille and G. Visconti, North-Holland, New York, pp. 77–101.

  • Emmons, L. K., Hess, P. G., Klonecki, A., Tie, X., Horowitz, L., Lamarque, J.-F., Kinnison, D., Brasseur, G., Atlas, E., Browell, E., Cantrell, C., Eisele, F., Mauldin, R. L., Merrill, J., Ridley, B., and Shetter, R., 2003: The budget of tropospheric ozone during TOPSE from two CTMs, J. Geophys. Res. 108, 8372, doi:10.1029/2002JD002665.

    Google Scholar 

  • Hauglustaine, D. A., Brasseur, G. P., Walter, S., Rasch, P., Muller, J. F., Emmons, L., and Carroll, M. A., 1998: MOZART: A global three-dimensional Chemical-Transport-Model of the atmosphere, 2. Model results and evaluation, J. Geophys. Res. 103, 28,291–28,335.

    Article  Google Scholar 

  • Hauglustaine, D. A., Brasseur, G. P., Levine, J. S., 1999: A sensitivity simulation of tropospheric ozone changes due to the 1997 Indonesian fire emissions, Geophys. Res. Lett. 26, 305–3308.

    Article  Google Scholar 

  • Hauglustaine, D. A., et al., 2001: On the role of lightning NO x in the formation of tropospheric ozone plumes: A global model perspective, J. Atmos. Chem. 38, 277–294.

    Article  Google Scholar 

  • Horowitz, L. W., Walters, S., Mauzerall, D., Emmons, L., Rasch, P., Granier, C., Tie, X., Lamarque, J. F., Schultz, M., and Brasseur, G., 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res. 108, 4784, doi: 10.1029/2002JD002853.

  • Lamarque, J.-F., Khattatov, B., Gille, J., and Brasseur, G., 1999: Assimilation of MAPS CO in a global three-dimensional model, J. Geophys. Res. 26, 209–26,218.

    Google Scholar 

  • Lamarque, J.-F. and Hess, P., 2003: Model analysis of the temporal and geographical origin of the CO distribution during the TOPSE campaign, J Geophys. Res. 108, 8354, DOI 10.1029/2002JD002077.

    Google Scholar 

  • Li, X. S., He, Z., Fang, X., and Zhou, X. J., 1999: Distribution of surface ozone concentration in the clean areas of China and its possible impact on crop yields, Adv. In Atmos. Sci. 16, 154–158.

    Google Scholar 

  • Lin, X., Trainer, M., Liu, S. C., 1988: On the nonlinearity of the tropospheric ozone production, J. Geophys. Res. 93(D12), 15879–15888.

    Google Scholar 

  • IEA, 2004, International Energy Agency, Key World Energy Statistics.

  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, in J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell and C. J. Johnson (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 881.

  • Jacob, D. J., Logan, J. A., and Murti, P. P., 1999: Effect of rising Asian emissions on surface ozone in the United States, Geophys. Res. Lett. 26(14), 2175–2178.

    Google Scholar 

  • Kato, N. and Akimoto, H., 1992: Anthropogenic emission of SO2 and NO x in Asia: Emission inventories, Atmos. Environ. 26, 2992–3017.

    Google Scholar 

  • Mauzerall, D. L., Narita, D., Akimoto, H., Horowitz, L., Walters, S., Hauglustaine, D., Brasseur, G., 2000: Seasonal characteristics of tropospheric ozone production and mixing ratios over East Asia: A global three-dimensional chemical transport model analysis, J. Geophys. Res. 105, 17895–17910.

    Article  Google Scholar 

  • Olivier, J. G. J., Bouwman, A. F., van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Viss-chedijk, A. J. H., Zandveld, P. Y. J., and Haverlag, J. L., 1996: Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on a 1 × 1 degree grid, RIVM report 771060 002/ TNO-MEP report R96/119, National Institute of Public Health and the Environment, Bilthoven, the Netherlands.

  • Ridley, B. A., Dye, J. E., Walega, J. G., Zheng, J., Grahek, F. E., Rison, W., 1996: On the production of active nitrogen by thunderstorms over New Mexico, J. Geophys. Res. 101(D15), 20985–21006.

    Article  Google Scholar 

  • Streets, D. G. and Waldhoff, S. T., 2000: Present and future emissions of air pollutants in China: SO2, NOx, and CO, Atmos. Enviro. 34, 363–374.

    Article  Google Scholar 

  • Streets, D. G., et al., 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res. 108(D21), 8809, doi:10.1029/2002JD003093.

    Google Scholar 

  • Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Zhang, Z., and Hao, Z., 2004: The air-borne particulate pollution in Beijing; concentration, composition, distribution and sources, Atmos. Environ. 38, 5991–6004.

    Article  Google Scholar 

  • Tie, X., Brasseur, G., Emmons, L., Horowitz, L., and Kinnison, D., 2001a: Effects of aerosols on tropospheric oxidants: A global model study, J. Geophys. Res. 106, 22931–22964.

    Article  Google Scholar 

  • Tie, X., Brasseur, G., Zhang, R., Emmons, L., and Lei, W., 2001b: Effects of lightning on reactive nitrogen and nitrogen reservoir species in the troposphere, J. Geophys. Res. 106, 3167–3178.

    Article  Google Scholar 

  • Tie, X., Zhang, R., Brasseur, G., and Lei, W., 2002: Global NO x production, J. Atmos. Chem. 43, 61–74.

    Google Scholar 

  • Tie, X., Guenther, A., and Holland, E., 2003a: Biogenic methanol and its impact on tropospheric oxidants, Geophys. Res. Lett. 30, 1881, doi:10.1029/2003GL017167. Geophys. Res. Lett.

  • Tie, X., Madronich, S., Walters, S., Rasch, P., and Collins, W., 2003b: Effect of Clouds on photolysis and oxidants in the troposphere, 4642, doi:10.1029/2003JD003659.J. Geophys. Res.

  • Tie, X.,et al., 2003c: Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Evidence during TOPSE, J. Geophys. Res. 108, 8364.

    Google Scholar 

  • Tie, X., Madronich, S., Walters, S., Edwards, D., Ginoux, P., Mahowald, N., Zhang, R., Lou, C., and Brasseur, G., 2005a: Assessment of global impact of aerosols on tropospheric oxidants, 110, doi:10.1029/2004JD005359.J. Geophys. Res.

  • Tie, X., Granier, C., Massie, S., Zhao, C. S., Qin, Y., Wang, G. L., Yang, P. C., Wang, P. C., Brasseur, G. P., 2006: Chemical characterizations of air pollution in eastern china and the eastern united states, Atmos. Environ. 40, 2607–2625.

    Google Scholar 

  • Yan, P., Wang, M., Cheng, H., and Zhou, X. J., 2003: Distributions and variations of surface ozone in Changshu, Yangtze Delta region, Acta Met. Sinica. 17, 205–217.

    Google Scholar 

  • Zhang, R., Tie, X., and Bond, D., 2003: Impacts of anthropogenic and natural NO x Sources over the U.S. on tropospheric chemistry, Proceedings of National Academic Science 100, 1505–1509.

  • Zhang, R., Lei, W., Tie, X., Hess, P., 2004: Industrial emissions cause extreme diurnal urban ozone variability, Proceedings of National Academic Science USA 101, 6346–6350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexi Tie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Tie, X., Wang, G. et al. Analysis of Air Quality in Eastern China and its Interaction with Other Regions of the World. J Atmos Chem 55, 189–204 (2006). https://doi.org/10.1007/s10874-006-9022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-006-9022-1

Keywords

Navigation