Skip to main content
Log in

High-resolution observations of dissolved isoprene in surface seawater in the Southern Ocean during austral summer 2010–2011

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We measured dissolved isoprene (2-methyl-1,3-butadiene; C5H8) concentrations in a broad area of the southern Indian Ocean and in the Indian sector of the Southern Ocean from 35°S to 64°S and from 37°E to 111°E during austral summer 2010–2011. Isoprene concentrations were continuously measured by use of a proton-transfer-reaction mass spectrometer combined with a bubbling-type equilibrator. Concentrations of isoprene and its emission flux throughout the study period ranged from 0.2 to 395 pmol L−1 and from 181 to 313 nmol m−2 day−1, respectively, the averages being generally higher than those of previous studies. Although we found a significant linear positive relationship between isoprene and chlorophyll-a concentrations (r 2 = 0.37, n = 36, P < 0.001), the correlation coefficient was lower than previously reported. In contrast, in the high-latitude area (>53°S) we identified a significant negative correlation (r 2 = 0.59, n = 1263, P < 0.001) between isoprene and the temperature-normalized partial pressure of carbon dioxide (n-pCO2), used as an indicator of net community production in this study. This suggests that residence times and factors controlling variations in isoprene and n-pCO2 are similar within a physically stable water column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuña Alvarez L, Exton DA, Timmis KN, Suggett DJ, McGenity TJ (2009) Characterization of marine isoprene-degrading communities. Environ Microbiol 11(12):3280–3291

    Article  Google Scholar 

  • Alvain S, Moulin C, Dandonneau Y, Breon FM (2005) Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res I 52:1989–2004

    Article  Google Scholar 

  • Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view. Global Biogeochem Cycles 22: GB3001. doi:10.1029/2007GB003154

  • Arnold SR, Spracklen DV, Williams J, Yassaa N, Sciare J, Bonsang B, Gros V, Peeken I, Lewis AC, Alvain S, Moulin C (2009) Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol. Atmos Chem Phys 9:1253–1262

    Article  Google Scholar 

  • Arrigo KR, Van Dijken GL (2004) Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Res II 51:117–138

    Article  Google Scholar 

  • Arrigo KR, DiTullio GR, Dunbar RB, Robinson DH, Van Woert M, Worthen DL, Lizotte MP (2000) Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. J Geophys Res 105(C4):8827–8846

    Article  Google Scholar 

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103(12):4605–4638

    Article  Google Scholar 

  • Baker AR, Turner SM, Broadgate WJ, Thompson A, McFiggans GB, Vesperini O, Nightengale PD, Liss PS, Jickells TD (2000) Distribution and sea–air fluxes o biogenic trace gases in the eastern Atlantic Ocean. Global Biogeochem Cycles 14(3):871–886

    Article  Google Scholar 

  • Bonsang B, Polle C, Lambert G (1992) Evidence for marine production of isoprene. Geophys Res Lett 19(11):1129–1132

    Article  Google Scholar 

  • Bonsang B, Gros V, Peeken I, Yassaa N, Bluhm K, Zoellner E, Sarda-Esteve R, Williams J (2010) Isoprene emission from phytoplankton monocultures: the relationship with chlorophyll-a, cell volume and carbon content. Environ Chem 7:554–563

    Article  Google Scholar 

  • Broadgate WJ, Liss PS, Penkett SA (1997) Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean. Geophys Res Lett 24(21):2675–2678

    Article  Google Scholar 

  • Broadgate WJ, Malin G, Kupper FC, Thompson A, Liss PS (2004) Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere. Mar Chem 88:61–73

    Article  Google Scholar 

  • Christian TJ, Kleiss B, Yokelson RJ, Holzinger R, Crutzen PJ, Hao WM, Shirai T, Blake DR (2004) Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC–MS/FID/ECD. J Geophys Res 109:D02311. doi:10.1029/2003JD003874

    Google Scholar 

  • Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303(5661):1173–1176

    Article  Google Scholar 

  • Codispoti LA, Friedrich GE, Hood DW (1986) Variability in the inorganic carbon system over the southeastern Bering Sea shelf duringspring1980 and spring-summer 1981. Cont Shelf Res 5:133–160

    Article  Google Scholar 

  • de Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257. doi:10.1002/mas.20119

    Article  Google Scholar 

  • de Gouw J, Warneke C, Karl T, Eerdekens G, van der Veen C, Fall R (2003) Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry. Int J Mass Spectom 223–224:365–382

    Article  Google Scholar 

  • Exton DA, Suggett DJ, McGenity TJ, Steinke M (2013) Chlorophyll-normalized isoprene production in laboratory cultures of marine microalgae and implications for global models. Limnol Oceanogr 58(4):1301–1311. doi:10.4319/lo.2013.58.4.1301

    Google Scholar 

  • Gantt B, Meskhidze N, Kamykowski D (2009) A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos Chem Phys 9:4915–4927

    Article  Google Scholar 

  • Goffart A, Catalano G, Hecq JH (2000) Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. J Mar Syst 27:161–175

    Article  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210

    Article  Google Scholar 

  • Hu Q, Xie Z, Wang X-M, Kang H, He Q-F, Zhang P (2013) Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic. Sci Rep 3:2280. doi:10.1038/srep02280

    Google Scholar 

  • Inomata S, Tanimoto H, Kameyama S, Tsunogai U, Irie H, Kanaya Y, Wang Z (2008) Technical note: determination of formaldehyde mixing ratios in air with PTR-MS: laboratory experiments and field measurements. Atmos Chem Phys 8:273–284

    Article  Google Scholar 

  • Inoue HY, Ishii M, Matsueda H, Saito S, Midorikawa T, Nemoto K (1999) MRI measurements of partial pressure of CO2 in surface waters of the Pacific during 1968 to 1970: re-evaluation and comparison of data with those of the 1980s and 1990s. Tellus 51B:830–848

    Article  Google Scholar 

  • Ishii M, Inoue HY, Matsueda H (2002) Net community production in the marginal ice zone and its importance for the variability of the oceanic pCO2 in the Southern Ocean south of Australia. Deep Sea Res II 49:1691–1706

    Article  Google Scholar 

  • Kameyama S, Tanimoto H, Inomata S, Tsunogai U, Ooki A, Yokouchi Y, Takeda S, Obata H, Uematsu M (2009) Equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS) for sensitive, high-resolution measurement of dimethyl sulfide dissolved in sea water. Anal Chem 81(21):9021–9026

    Article  Google Scholar 

  • Kameyama S, Tanimoto H, Inomata S, Tsunogai U, Ooki A, Takeda S, Obata H, Tsuda A, Uematsu M (2010) High-resolution measurement of multiple volatile organic compounds dissolved in seawater using equilibrator inlet-proton transfer reaction-mass spectrometry (EI-PTR-MS). Mar Chem 122:59–73

    Article  Google Scholar 

  • Kameyama S, Tanimoto H, Inomata S, Yoshikawa-Inoue H, Tsunogai U, Tsuda A, Uematsu M, Ishii M, Sasano D, Suzuki K, Nosaka Y (2013) Strong relationship between dimethyl sulfide and net community production in the western subarctic Pacific. Geophys Res Lett 40:3986–3990. doi:10.1002/grl.50654

    Google Scholar 

  • Karl T, Fall R, Crutzen PJ, Jordan A, Lindinger W (2001) High concentrations of reactive biogenic VOCs at a high altitude site in late autumn. Geophys Res Lett 28(3):507–510

    Article  Google Scholar 

  • Kuzma J, Nemecek-marshall M, Pollock WH, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30:97–103

    Article  Google Scholar 

  • Lewis AC, Carpenter LJ, Pilling MJ (2001) Nonmethane hydrocarbons in Southern Ocean boundary layer air. J Geophys Res-Atmos 106:4987–4994. doi:10.1029/2000JD900634

    Article  Google Scholar 

  • Liao H, Henze DK, Seinfeld JH, Wu S, Mickley LJ (2007) Biogenic secondary organic aerosol over the United States: comparison of climatological simulations with observations. J Geophys Res 112:D06201. doi:10.1029/2006JD007813

    Google Scholar 

  • Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectom Ion Proc 173:191–241

    Article  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271. doi:10.1093/plankt/17.6.1245

    Article  Google Scholar 

  • Mackay D, Shiu WY (1981) A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem Ref Data 10(4):1175–1199

    Article  Google Scholar 

  • Mahadevan A, Tagliabue A, Bopp L, Lenton A, Mémery L, Lévy M (2011) Impact of episodic vertical fluxes on sea surface pCO2 Philos Trans R Soc A 369:2009–2025. doi:10.1098/rsta.2010.0340

  • Matsunaga S, Mochida M, Saito T, Kawamura K (2002) In situ measurement of isoprene in the marine air and surface seawater from the western North Pacific. Atmos Environ 36(39–40):6051–6057

    Article  Google Scholar 

  • Merlivat L, Gonzalez Davila M, Caniaux G, Boutin J, Reverdin G (2009) Mesoscale and diel to monthly variability of CO2 and carbon fluxes at the ocean surface in the northeastern Atlantic. J Geophys Res 114:C03010. doi:10.1029/2007JC004657

    Google Scholar 

  • Meskhidze N, Nenes A (2006) Phytoplankton and cloudiness in the Southern Ocean. Science 314(5804):1419–1423

    Article  Google Scholar 

  • Milne PJ, Riemer DD, Zika RG, Brand LE (1995) Measurement of vertical distribution of isoprene in surface seawater, its chemical fate, and its emission from several phytoplankton monocultures. Mar Chem 48:237–244

    Article  Google Scholar 

  • Minas HJ, Minas M, Packard TT (1986) Productivity in upwelling areas deduced from hydrographic and chemical fields. Limnol Oceanogr 31(6):1180–1204

    Article  Google Scholar 

  • Moore RM, Wang L (2006) The influence of iron fertilization on the fluxes of methyl halides and isoprene from ocean to atmosphere in the SERIES experiment. Deep Sea Res II 53:2398–2409

    Article  Google Scholar 

  • Moore RM, Oram DE, Penkett SA (1994) Production of isoprene by marine phytoplankton cultures. Geophys Res Lett 21(23):2507–2510

    Article  Google Scholar 

  • Müller JF, Stavrakou T, Wallens S, De Smedt I, Van Roozendael M, Potosnak MJ, Rinne J, Munger B, Goldstein A, Guenther AB (2008) Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmos Chem Phys 8:1329–1341

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  Google Scholar 

  • Orsi AH, Whitworth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I 42(5):641–673

    Article  Google Scholar 

  • Palmer PI, Shaw SL (2005) Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. Geophys Res Lett 32:L09805. doi:10.1029/2005GL022592

    Google Scholar 

  • Rasmussen RA, Went FW (1965) Volatile organic material of plant origin in atmosphere. Proc Natl Acad Sci USA 53:215–220. doi:10.1073/pnas.53.1.215

    Article  Google Scholar 

  • Ratte M, Bujok O, Spitzy A, Rudolph J (1998) Photochemical alkene formation in seawater from dissolved organic carbon: Results from laboratory experiments. J Geophys Res 103(D5):5707–5717

    Article  Google Scholar 

  • Shaw SL, Chisholm SW, Prinn RG (2003) Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. Mar Chem 80(4):227–245

    Article  Google Scholar 

  • Sohrin Y, Iwamoto S, Matsui M, Obata H, Nakayama E, Suzuki K, Handa N, Ishii M (2000) The distribution of Fe in the Australian sector of the Southern Ocean. Deep Sea Res I 47:55–84

    Article  Google Scholar 

  • Suzuki K, Handa N, Nishida T, Wong CS (1997) Estimation of phytoplankton succession in a fertilized mesocosm during summer using high-performance liquid chromatographic analysis of pigments. J Exp Mar Biol Ecol 214:1–17

    Article  Google Scholar 

  • Suzuki K, Hinuma A, Saito H, Kiyosawa H, Liu H, Saino T, Tsuda A (2005) Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog Oceanogr 64:167–187

    Article  Google Scholar 

  • Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC (1993) Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochem Cycles 7:843–878

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49(9–10):1601–1622

    Article  Google Scholar 

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. II 56:554–577

    Google Scholar 

  • Tomas CR (1997) Identifying marine phytoplankton. Academic Press, San Diego, p 858

    Google Scholar 

  • Tran S, Bonsang B, Gros V, Peeken I, Sarda-Esteve R, Bernhardt A, Belviso S (2013) A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010. Biogeosciences 10:1909–1935

    Article  Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382

    Article  Google Scholar 

  • Wingenter OW, Haase KB, Strutton P, Friederich G, Meinardi S, Blake DR, Rowland FS (2004) Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean iron enrichment experiments. Proc Natl Acad Sci USA 101(23):8537–8541

    Article  Google Scholar 

  • Wright SW, van den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ (2010) Phytoplankton community structure and stocks in the Southern Ocean (30–80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res II 57:758–778

    Article  Google Scholar 

  • Yokouchi Y, Li H-J, Machida T, Aoki S, Akimoto H (1999) Isoprene in the marine boundary layer (Southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): comparison with dimethyl sulfide and bromoform. J Geophys Res 104(D7):8067–8076

    Article  Google Scholar 

  • Yoshikawa-Inoue H, Ishii M (2005) Variations and trends of CO2 in the surface seawater in the Southern Ocean south of Australia between 1969 and 2002. Tellus 57B:58–69

    Article  Google Scholar 

  • Zimmerman PR, Greenberg JP, Westberg CE (1988) Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary-layer. J Geophys Res 93:1407–1416. doi:10.1029/JD093iD02p01407

    Article  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the captain and crew of the R/V Hakuho Maru and to all the scientists on board for their support during cruise KH-10-7. We also thank Dr Y. Sato-Takabe of Ehime University and Dr H. Endo, Dr S. Takao, and Mr Y. Nosaka of Hokkaido University for help with HPLC, FCM, and microscopic analysis, and Mr Kazuhiro Okuzawa of the National Institute for Environmental Studies for his contribution to EI-PTR-MS measurements. This research was conducted under a Grant-in-Aid (no. 1867001) for Scientific Research in Priority Areas (Western Pacific Air–Sea Interaction Study; W-PASS). This research is a contribution to the Surface Ocean Lower Atmosphere Study (SOLAS) Core Project of the International Geosphere–Biosphere Programme (IGBP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohiko Kameyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameyama, S., Yoshida, S., Tanimoto, H. et al. High-resolution observations of dissolved isoprene in surface seawater in the Southern Ocean during austral summer 2010–2011. J Oceanogr 70, 225–239 (2014). https://doi.org/10.1007/s10872-014-0226-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-014-0226-8

Keywords

Navigation