Skip to main content

Advertisement

Log in

Shell growth history of geoduck clam (Panopea abrupta) in Parry Passage, British Columbia, Canada: Temporal variation in annuli and the Pacific Decadal Oscillation

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

An assemblage of geoduck clam shells from the marine environment of coastal British Columbia was studied. Shells were cut and the widths of internal shell growth increments, annuli, were measured from the hinge plate. The largest shells showed more than one hundred annual increments. Shell growth exhibited juvenile maxima at ontogenetic ages 3–6 years. The growth maximum was followed by a distinct decline that continued until the death of each individual. Further, this ontogenetic growth trend was mathematically removed from the data in order to examine growth variations other than ageing. The longest growth records from the oldest shells were compared to monthly indices of the Pacific Decadal Oscillation (PDO). It was found that the PDO exerts the strongest influence on the shell growth during the very start of the growing season, in February and March. We also detected increased magnitude of growth variations towards the end of the 20th century. Similar trends were apparent in the PDO record. Moreover, the shell specimen displaying the strongest trend of increasing variance had the strongest PDO-linked regional growth signal. Our results support the view that PDO exerts a governing influence on the biological and ecological system along Northeast Pacific coastal areas. Incorporation of geoduck shell growth increment analyses into multi-disciplinary studies dealing with palaeoceanography and archaeology is suggested as a promising future approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bence, J. R. (1995): Analysis of short time series: correcting for autocorrelation. Ecology, 76, 628–639.

    Article  Google Scholar 

  • Biondi, F., A. Gershunov and D. R. Cayan (2001): North Pacific decadal climate variability since 1661. J. Climate, 14, 5–10.

    Article  Google Scholar 

  • Bureau, D., W. Hajas, N. W. Surrey, C. M. Hand, G. Dovey and A. Campbell (2002): Age, size structure and growth parameters of geoducks (Panopea abrupta, Conrad 1849) from 34 locations in British Columbia sampled between 1993 and 2000. Can. Tech. Rep. Fish. Aquat. Sci., 2413, 1–84.

    Google Scholar 

  • Bureau, D., W. Hajas, C. M. Hand and G. Dovey (2003): Age, size structure and growth parameters of geoducks (Panopea abrupta, Conrad 1849) from seven locations in British Columbia sampled in 2001 and 2002. Can. Tech. Rep. Fish. Aquat. Sci., 2494, 1–29.

    Google Scholar 

  • Chao, Y., M. Ghil and J. C. McWilliams (2000): Pacific interdecadal variability in this Century’s sea surface temperatures. Geophys. Res. Lett., 27, 2261–2264.

    Article  Google Scholar 

  • Cook, E. (1990): Conceptual linear aggregate model for tree rings. p. 98–104. In Methods of Dendrochronology: Applications in the Environmental Science, ed. by E. Cook and L. A. Kairiukstis, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Cook, E. R. and K. Peters (1981): The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull., 41, 45–53.

    Google Scholar 

  • Cook, E. R. and K. Peters (1997): Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene, 7, 359–368.

    Article  Google Scholar 

  • Fritts, H. C. (1976): Tree Rings and Climate. Academic Press, London, 567 pp.

    Google Scholar 

  • Fritts, H. C., D. G. Smith, J. W. Cardis and C. A. Budelsky (1965): Tree-ring characteristics along a vegetational gradient in Northern Arizona. Ecology, 46, 393–401.

    Article  Google Scholar 

  • Fritts, H. C., J. E. Mosimann and C. P. Bottorff (1969): A revised computer program for standardizing tree-ring series. Tree-Ring Bull., 29, 15–20.

    Google Scholar 

  • Gedalof, Z. and D. J. Smith (2001): Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophys. Res. Lett., 28, 1515–1518.

    Article  Google Scholar 

  • Grossman, E. L. and T. L. Ku (1986): Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol., 59, 59–74.

    Article  Google Scholar 

  • Hare, S. R. and N. J. Mantua (2000): Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr., 47, 103–146.

    Article  Google Scholar 

  • Hare, S. R., N. J. Mantua and R. C. Francis (1999): Inverse production regimes: Alaska and West Coast Pacific Salmon. Fisheries, 24, 6–15.

    Article  Google Scholar 

  • Helama, S., M. Lindholm, M. Timonen and M. Eronen (2004): Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theoretical and Applied Climatol., 79, 239–254.

    Article  Google Scholar 

  • Helama, S., B. R. Schöne, A. J. Kirchhefer, J. K. Nielsen, D. L. Rodland and R. Janssen (2007): Compound response of marine and terrestrial ecosystems to varying climate: preanthropogenic perspective from bivalve shell growth increments and tree-rings. Mar. Environ. Res., 63, 185–199.

    Article  Google Scholar 

  • Holmes, R. L. (1983): Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull., 43, 69–78.

    Google Scholar 

  • Jones, D. S. (1983): Sclerochronology: reading the record of the Molluscan Shell. Am. Sci., 71, 384–391.

    Google Scholar 

  • Lepofsky, D., K. Lertzman, D. Hallett and R. Mathewes (2005): Climate change and culture change on the southern coast of British Columbia 2400–1200 B.P.: An hypothesis. Am. Antiquity, 70, 267–293.

    Article  Google Scholar 

  • Macias Fauria, M. and E. A. Johnson (2006): Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. J. Geophys. Res., 111, G04008, doi: 10.1029/2006JG000181.

    Article  Google Scholar 

  • Mantua, N. J. and S. R. Hare (2002): The Pacific Decadal Oscillation. J. Oceanogr., 58, 35–44.

    Article  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace and R. C. Francis (1997): A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc., 78, 1069–1079.

    Article  Google Scholar 

  • Marchitto, T. M., G. A. Jones, G. A. Goodfriend and C. R. Weidman (2000): Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quat. Res., 53, 236–246.

    Article  Google Scholar 

  • Minobe, S. (1997): A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683–686.

    Article  Google Scholar 

  • Minobe, S. (1999): Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855–858.

    Article  Google Scholar 

  • Minobe, S. (2000): Spatio-temporal structure of the pentadecadal variability over the North Pacific. Prog. Oceanogr., 47, 381–408.

    Article  Google Scholar 

  • Mudelsee, M. (2002): TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Comput. Geosci., 28, 69–72.

    Article  Google Scholar 

  • Mudelsee, M. (2003): Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math. Geol., 35, 651–665.

    Article  Google Scholar 

  • Mutvei, H., T. Westermark, E. Dunca, B. Carell, S. Forberg and A. Bignert (1994): Methods for the study of environmental changes using the structural and chemical information in molluscan shells. Bull. Inst. Océanogr., Monaco, n° special 13, 163–186.

    Google Scholar 

  • Mutvei, H., E. Dunca, H. Timm and T. Slepukhina (1996): Structure and growth rates of bivalve shells as indicators of environmental changes and pollution. Bull. Inst. Océanogr., Monaco, n° special 14, 65–72.

    Google Scholar 

  • Ottersen, G., N. C. Stenseth and J. W. Hurrell (2004): Climatic fluctuations and marine systems: a general introduction to the ecological effects. p. 3–14. In Marine Ecosystems and Climate Variation. The North Atlantic. A Comparative Perspective, ed. by N. Stenseth, G. Ottersen, J. W. Hurrell and A. Belgrano, Oxford University Press, Oxford.

    Google Scholar 

  • Post, E. (2003): Large-scale climate synchronizes the timing of flowering by multiple species. Ecology, 84, 277–281.

    Article  Google Scholar 

  • Post, E. and M. C. Forchhammer (2002): Synchronization of animal population dynamics by large-scale climate. Nature, 420, 168–171.

    Article  Google Scholar 

  • Rye, D. M. and M. A. Sommer, II (1980): Reconstructing paleotemperature and paleosalinity regimes with oxygen isotopes. p. 169–202. In Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change, ed. by D. C. Rhoads and R. A. Lutz, Plenum Press, New York & London.

    Google Scholar 

  • Scourse, J., C. Richardson, G. Forsythe, I. Harris, J. Heinemeier, N. Fraser, K. Briffa and P. Jones (2006): First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica islandica. Holocene, 16, 967–974.

    Article  Google Scholar 

  • Shaul, W. and L. Goodwin (1982): Geoduck (Panope generosa: Bivalvia) age as determined by internal growth lines in the shell. Can. J. Fish. Aquat. Sci., 39, 632–636.

    Article  Google Scholar 

  • Strom, A., R. C. Francis, N. J. Mantua, E. L. Miles and D. L. Peterson (2004): North Pacific climate recorded in growth-rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophys. Res. Lett., 31, doi:10.1029/2004GL019440.

    Google Scholar 

  • Strom, A., R. C. Francis, N. J. Mantua, E. L. Miles and D. L. Peterson (2005): Preserving low-frequency climate signals in growth records of geoduck clams (Panopea abrupta). Palaeogeogr., Palaeoclimatol., Palaeoecol., 228, 167–178.

    Article  Google Scholar 

  • Timm, H. (1994): Big clams of the Estonian freshwaters: comparison of the age, shell length, and shell weight in different species and populations. Proc. Estonian Acad. Sci., Biology, 43, 149–159.

    Google Scholar 

  • Trost, T. (2005): Forgotten waters: A zooarchaeological analysis of the Cove Cliff site (DhRr 18), Indian Arm, British Columbia. M.A. Thesis, Simon Fraser Univ.

  • Zhang, Y., J. M. Wallace and D. S. Battisti (1997): ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–1020.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuli Helama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, J.K., Helama, S. & Schöne, B. Shell growth history of geoduck clam (Panopea abrupta) in Parry Passage, British Columbia, Canada: Temporal variation in annuli and the Pacific Decadal Oscillation. J Oceanogr 64, 951–960 (2008). https://doi.org/10.1007/s10872-008-0078-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-008-0078-1

Keywords

Navigation