Skip to main content

Advertisement

Log in

The upper ocean response to a moving typhoon

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The upper ocean response to the translation speed of typhoons is studied using a three-dimensional primitive equation model. Similar models studied previously have applied stability criteria rather than the diffusion term to simulate the vertical mixing process. This study retains the diffusion term and uses the level-2 turbulence closure scheme to estimate the vertical eddy viscosity. The model results indicate that in the forced period, the mixed-layer temperature decrease is greater for a slow-moving storm due to stronger upwelling caused by the longer residence time. A fast-moving storm can attain a similar cooling intensity in the wake period if its residence time allows the wind to resonate with the current. The significant downward momentum diffusion and advection in the first few inertial periods of these events leads to strong, persistent inertial pumping throughout the upper ocean in the wake period. The mixed layer is further cooled by turbulent mixing supported by vertical current shears. Meanwhile, the upper thermocline exhibits a compensating temperature increase. The vertical transfer magnitude and penetration scale are smaller in the slow-moving case, when the inertial motion decays rapidly. The model results also indicate that the dominant cooling process can be inferred from the non-dimensional storm speed. However, this value may be misleading for rapidly moving storms in which the current response is so distant from the storm that little wind work is performed on the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chang, S. W. and R. A. Anthes (1978): Numerical simulations of the ocean’s nonlinear baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468–480.

    Article  Google Scholar 

  • Chen, Y. K. (2006): Typhoon induced inertial motion in the South China Sea. Master thesis, Institute of Oceanography, National Taiwan University, 98 pp. (in Chinese).

  • Cione, J. J. and E. W. Uhlhorn (2003): Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796.

    Article  Google Scholar 

  • Crawford, G. B. and W. G. Large (1996): A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873–891.

    Article  Google Scholar 

  • D’Asaro, E. A. (2003): The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561–579.

    Article  Google Scholar 

  • Emanuel, K. (2001): Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106,D14, 14771–14781.

    Article  Google Scholar 

  • Geisler, J. E. (1970): Linear theory of the response of a two-layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249–272.

    Article  Google Scholar 

  • Greatbatch, R. J. (1984): On the response of the ocean to a moving storm: parameters and scales. J. Phys. Oceanogr., 14, 59–78.

    Article  Google Scholar 

  • Holland, G. J. (1980): An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212–1218.

    Article  Google Scholar 

  • Jocob, S. D., L. K. Shay and A. J. Mariano (2000): The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 1407–1429.

    Article  Google Scholar 

  • Mellor, G. L. and P. A. Durbin (1975): The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 5, 718–728.

    Article  Google Scholar 

  • Plueddemann, A. J. and J. T. Farrar (2006): Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 5–30.

    Article  Google Scholar 

  • Pollard, R. T. and R. C. Millard, Jr. (1970): Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, 813–821.

    Google Scholar 

  • Price, J. F. (1981): Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.

    Article  Google Scholar 

  • Price, J. F. (1983): Internal wave wake of a moving storm. Part I: scales energy budget and observations. J. Phys. Oceanogr., 13, 949–965.

    Article  Google Scholar 

  • Price, J. F., T. B. Sanford and G. Z. Forristall (1994): Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.

    Article  Google Scholar 

  • Semtner, A. J. and Y. Mintz (1977): Numerical simulation of the Gulf Stream and mid-ocean eddies. J. Phys. Oceanogr., 7, 208–230.

    Article  Google Scholar 

  • Shay, L. K., R. L. Elsberry and P. G. Black (1989): Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19, 649–669.

    Article  Google Scholar 

  • Wada, A. (2002): The processes of SST cooling by typhoon passage and case study of typhoon Rex with a mixed layer ocean model. Pap. Meteor. Geophys., 52, 31–66.

    Article  Google Scholar 

  • Wada, A. (2005): Numerical simulations of sea surface cooling by a mixed layer model during the passage of typhoon Rex. J. Oceanogr., 61, 41–57.

    Article  Google Scholar 

  • Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu and G. L. Mellor (2002): Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107,C12, 3232, doi:10.1029/2001JC000969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Sheng Chern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, Y., Chern, CS. & Wang, J. The upper ocean response to a moving typhoon. J Oceanogr 64, 115–130 (2008). https://doi.org/10.1007/s10872-008-0009-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-008-0009-1

Keywords

Navigation