Skip to main content

Advertisement

Log in

A Coupled Ice-Ocean Model in the Pan-Arctic and North Atlantic Ocean: Simulation of Seasonal Cycles

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A coupled ice-ocean model is configured for the pan-Arctic and northern North Atlantic Ocean with a 27.5 km resolution. The model is driven by the daily atmospheric climatology averaged from the 40-year NCEP reanalysis (1958–1997). The ocean model is the Princeton Ocean Model (POM), while the sea ice model is based on a full thermodynamical and dynamical model with plastic-viscous rheology. A sea ice model with multiple categories of thickness is utilized. A systematic model-data comparison was conducted. This model reasonably reproduces seasonal cycles of both the sea ice and the ocean. Climatological sea ice areas derived from historical data are used to validate the ice model performance. The simulated sea ice cover reaches a maximum of 14 × 106 km2 in winter and a minimum of 6.7 × 106 km2 in summer. This is close to the 95-year climatology with a maximum of 13.3 × 106 km2 in winter and a minimum of 7 × 106 km2 in summer. The simulated general circulation in the Arctic Ocean, the GIN (Greenland, Iceland, and Norwegian) seas, and northern North Atlantic Ocean are qualitatively consistent with historical mapping. It is found that the low winter salinity or freshwater in the Canada Basin tends to converge due to the strong anticyclonic atmospheric circulation that drives the anticyclonic ocean surface current, while low summer salinity or freshwater tends to spread inside the Arctic and exports out of the Arctic due to the relaxing wind field. It is also found that the warm, saline Atlantic Water has little seasonal variation, based on both simulation and observations. Seasonal cycles of temperature and salinity at several representative locations reveals regional features that characterize different water mass properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, K. (1981): On the deep circulation in the Arctic Ocean. Deep-Sea Res., 28A, 251–268.

    Google Scholar 

  • Aagaard, K. (1989): A synthesis of the Arctic Ocean circulation. Rapp. P.V. Reun. Cons. Int. Explor. Mer., 188, 11–22.

    Google Scholar 

  • Aagaard, K. and E. C. Carmack (1989): The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14,485–14,498.

    Google Scholar 

  • Aagaard, K. and P. Greiman (1975): Toward new mass and heat budgets for the Arctic mediterranean seas. J. Geophys. Res., 80, 3821–3827.

    Google Scholar 

  • Blumberg, A. F. and G. L. Mellor (1987): A description of 3-D coastal ocean circulation model. p 1–16. In Coastal and Esturine Sciences 4: 3-D Coastal Ocean Models, ed. by N. S. Heaps, American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Bourke, R. H. and R. P. Garrett (1987): Sea ice thickness distribution in the Arctic Ocean. Cold Regions Science and Technology, 13, 259–280.

    Google Scholar 

  • Cheng, A. and R. Preller (1992): An ice-ocean coupled model for the Northern Hemisphere. Geophys. Res. Lett., 19, 901–904.

    Google Scholar 

  • Clarke, R. A. (1984): Transport through the Cape Farewell-Femish Cap section. Rapp. P.V. Reu. Cos. Int. Explor. Mer., 185, 120–130.

    Google Scholar 

  • Clarke, R. A., J. H. Swift, J. L. Reid and K. P. Koltermann (1990): The formation of Greenland Sea Deep Water: double diffusion or deep convection? Deep-Sea Res., 37, 1385–1424.

    Google Scholar 

  • Coachman, L. K. and K. Aagaard (1974): Physical oceanography of arctic and subarctic seas. In Marine Geology and Oceanography of the Arctic Seas, Chap. 1, ed. by Y. Herman, Springer-Verlag.

  • Dunbar, M. and W. Wittmann (1963): Some features of ice movement in the Arctic Basin. p. 90–108. In Proceedings of Arctic Basin Symposium 1962, Arctic Institute of North America, Washington, D.C.

    Google Scholar 

  • Environmental Working Group (EWG) (1998): National Snow and Ice Data Center, University of Colorado.

  • Fleming, G. H. and A. J. Semtner, Jr. (1991): A numerical study of interannual ocean forcing on Arctic ice. J. Geophys. Res., 96, 4589–4603.

    Google Scholar 

  • Gerdes, R. (1993): A primitive equation ocean circulation model using a general vertical coordinate transformation. II. Application to an overflow problem. J. Geophys. Res., 98, 14,703–14,726.

    Google Scholar 

  • Gloersen, P., W. J. Campbell, D. J. Cavalieri, J. C. Comiso, C. L. Parkinson and H. J. Zwally (1992): Arctic and Antarctic Sea Ice, 1978–1987: Satellite passive-microwave observations and analysis. NASA SP-511, Washington, D.C., 290 pp.

  • Haapala, J. (2000): On the modelling of ice-thickness redistribution. J. Glaciology, 46, 427–437.

    Google Scholar 

  • Hakkinen, S. (2000): Simulated low-frequency modes of circulation in the Arctic Ocean. J. Geophys. Res., 105, 6549–6564.

    Google Scholar 

  • Hakkinen, S., G. L. Mellor and L. H. Kantha (1992): Modeling deep convection in the Greenland Sea. J. Geophys. Res., 97, 5389–5408.

    Google Scholar 

  • Haney, R. L. (1991): On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21, 610–619.

    Google Scholar 

  • Hibler, W. D., III (1979): A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815–846.

    Google Scholar 

  • Hibler, W. D., III (1980): Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108, 1943–1973.

    Google Scholar 

  • Hibler, W. D., III and K. Bryan (1987): A diognostic ice-ocean model. J. Phys. Oceanogr., 17, 987–1015.

    Google Scholar 

  • Holland, M. M., C. M. Bitz, M. Eby and A. J. Weaver (2001): The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate, 14, 656–675.

    Google Scholar 

  • Hunke, E. C. and J. K. Dukowicz (1997): An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867.

    Google Scholar 

  • Hurrell, J. W. and H. van Loon (1997): Decadal variations in climate associated with the North Atlantic Oscillation. Climate Change, 36, 301–326.

    Google Scholar 

  • Ikeda, M. (1990): Decadal oscillation of the air-ice-sea system in the northern hemisphere. Atmosphere-Ocean, 28, 106–139.

    Google Scholar 

  • Ikeda, M., J. Wang and J.-P. Zhao (2001): Hypersensitive decadal oscillation in the Arctic/subarctic climate. Geophys. Res. Lett., 28, 1275–1278.

    Google Scholar 

  • Ivers, W. D. (1975): The deep circulation in the northern Atlantic with special reference to the Labrador Sea. Ph.D. Thesis, University of California at San Diego, 179 pp.

  • Jones, E. P., B. Rudels and L. G. Anderson (1995): Deep waters of the Arctic Ocean: origins and circulation. Deep-Sea Res., 42, 737–760.

    Google Scholar 

  • Kantha, L. H. and G. L. Mellor (1989): Application of a two-dimensional coupled ocean-ice model to the Bering Sea marginal ice zone. J. Geophys. Res., 94, 10,921–10,936.

    Google Scholar 

  • Karcher, M., J. Brauch, B. Fritzsch, R. Gerdes, F. Kauker, C. Koberle and M. Prange (1999): Variability in the Nordic seas exchange-model results 1979–1993. ICES CM, 1999, L: 18.

    Google Scholar 

  • Kimura, N. and M. Wakatsuchi (2000): Relationship between sea-ice motion and geostrophic wind in the northern hemisphere. Geophys. Res. Lett., 27, 3735–3738.

    Google Scholar 

  • Koberle, C. and R. Gerdes (2003): Mechanisms determining the variability of Arctic sea ice conditions and export. J. Climate, 16, 2843–2858.

    Google Scholar 

  • Maslowski, W., D. C. Marble, W. Walczowski and A. J. Semtner (2001): On larger-scale shifts in the Arctic Ocean and sea-ice conditions during 1979–98. Annuals. of Glaciol., 33, 545–550.

    Google Scholar 

  • Mellor, G. L. and L. H. Kantha (1989): An ice-ocean coupled model. J. Geophys. Res., 94, 10,937–10,954.

    Google Scholar 

  • Mellor, G. L., T. Ezer and L.-Y. Oey (1994): The pressure gradient conundrum of sigma coordinate ocean models. J. Atmos. Oceanic Technol., 11, 1126–1134.

    Google Scholar 

  • Mysak, L. A. and J. Wang (1991): Climatic atlas of seasonal and annual Arctic sea-level pressure, SLP anomalies and sea-ice concentration, 1953–88. C2 GCR Report No. 91-14, McGill Univ., Montreal, 194 pp.

    Google Scholar 

  • Mysak, L. A., D. K. Manak and R. F. Marsden (1990): Sea-ice anomalies observed in the Greenland and Labrador Seas during 1901–1984 and their relation to an interdecadal Arctic climate cycle. Climate Dynamics, 5, 111–133.

    Google Scholar 

  • Oberhuber, J. M. (1993): Simulation of the Atlantic circulation with a coupled sea-ice-mixed layer-isopycnal general circulation model. Part I: Model description. J. Phys. Oceanogr., 23, 808–829.

    Google Scholar 

  • Parkinson, C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally and J. C. Comiso (1999): Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res., 104, 20,837–20,856.

    Google Scholar 

  • Pfirman, S. L., R. Colony, D. Nunberg, H. Eicken and R. Rigor (1997): Reconstructing the origin and trajectory of drifting Arctic sea ice. J. Geophys. Res., 102, 12,575–12,586.

    Google Scholar 

  • Polyakov, I. (2001): An eddy parameterization based on maximum entropy production with application to modelling the Arctic Ocean circulation. J. Phys. Oceanogr., 31, 2255–2270.

    Google Scholar 

  • Prinsenberg, S. J. (1984): Freshwater contents and heat budgets of James Bay and Hudson Bay. Cont. Shelf Res., 3, 191–200.

    Google Scholar 

  • Proshutinsky, A. and 14 others (2001): Multinational effort studies differences among Arctic ocean models. EOS, AGU, 82(51), 637–644.

    Google Scholar 

  • Reynaud, T. H. (1994): Dynamics of the Northwestern Atlantic Ocean: A diagnostic study. P h.D. Thesis (also C2 GCR Rep. No. 94-5), McGill University, Montreal, 267 pp.

    Google Scholar 

  • Rigor, I. G., J. M. Wallace and R. L. Colony (2002): Response of sea ice to the Arctic Oscillation. J. Climate, 15, 2648–2663.

    Google Scholar 

  • Saenko, O. A., G. M. Flato and A. J. Weaver (2002): Improved representation of sea-ice processes in climate models. Atmos-Oceans, 40, 21–43.

    Google Scholar 

  • Saucier, F. J., F. Roy, D. Gilbert, P. Pellerin and H. Ritchie (2003): The formation and circulation processes of water masses in the Gulf of St. Lawrence. J. Geophys. Res., 108, 3269–3289.

    Google Scholar 

  • Schauer, U. and E. Fahrbach (2004): Arctic warming through the Fram Strait: Ocean heat transport from 3 years of measurements. J. Geophys. Res., 109, C06026, doi:10. 1029/ 2003JC001823.

    Google Scholar 

  • Semtner, A. J., Jr. (1976): Numerical simulation of the Arctic Ocean circulation. J. Phys. Oceanogr., 6, 409–424.

    Google Scholar 

  • Steele, M. and T. Boyd (1998): Retreat of the cold halocline layer in the Arctic Ocean. J. Geophys. Res., 103, 10,419–10,435.

    Google Scholar 

  • Steele, M., R. Rebecca and W. Ermold (2001): PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 2079–2087.

    Google Scholar 

  • Thompson, K. R., J. R. N. Lazier and B. Taylor (1986): Wind-forced changes in Labrador Current transport. J. Geophys. Res., 91, 14,261–14,268.

    Google Scholar 

  • Thorndike, A. S., D. A. Rothrock, G. A. Maykut and R. Colony (1975): The thickness of distribution of sea ice, J. Geophys. Res., 80, 4501–4513.

    Google Scholar 

  • van Loon, H. and J. C. Rogers (1978): The seesaw in winter temperature between Greenland and northern Europe, Part 1: General description. Mon. Wea. Rev., 106, 296–310.

    Google Scholar 

  • Wang, J. (2001): A nowcast/forecast system for coastal ocean circulation (NFSCOC) with a simple nudging data assimilation. J. Atmos. Oceanic Technol., 18, 1037–1047.

    Google Scholar 

  • Wang, J. and M. Ikeda (2001): Arctic Sea-Ice Oscillation: Regional and seasonal perspectives. Annals of Glaciology, 33, 481–492.

    Google Scholar 

  • Wang, J., L. A. Mysak and R. G. Ingram (1994a): A numerical simulation of sea-ice cover in Hudson Bay. J. Phys. Oceanogr., 24, 2515–2533.

    Google Scholar 

  • Wang, J., L. A. Mysak and R. G. Ingram (1994b): Interannual variability of sea-ice cover in Hudson Bay, Baffin Bay and the Labrador Sea. Atmosphere-Ocean, 32(2), 421–447.

    Google Scholar 

  • Wang, J., M. Jin, V. Patrick, J. Allen, D. Eslinger, C. Mooers and T. Cooney (2001): Numerical simulation of the seasonal ocean circulation patterns and thermohaline structure of Prince William Sound, Alaska. Fisheries Oceanogr., 10(Suppl. 1), 132–148.

    Google Scholar 

  • Wang, J., Q. Liu and M. Jin (2002): A User’s Guide for a Coupled Ice-Ocean Model (CIOM) in the Pan-Arctic and North Atlantic Oceans. International Arctic Research Center-Frontier Research System for Global Change, Tech. Rep. 02-01, 65 pp.

  • Wang, J., B. Wu, C. L. Tang, J. E. Walsh and M. Ikeda (2004): Seesaw structure of subsurface temperature anomalies between the Barents Sea and the Labrador Sea. Geophys. Res. Lett., 31, L19301, doi:10. 1029/2004GL019981.

    Google Scholar 

  • Wang, J., M. Ikeda, S. Zhang and G. Gerdes (2005): Linking the northern hemisphere sea ice reduction trend and the quasi-decadal Arctic sea ice oscillation. Climate Dyn., 1432-0894 (on line), DOI:10.1007/s00382-004-0454-5.

  • Weatherly, J. W. and J. E. Walsh (1996): The effects of precipitation and river runoff in a coupled ice-ocean model of the Arctic. Climate Dyn., 12, 785–798.

    Google Scholar 

  • Yao, T., C. L. Tang and I. K. Peterson (2000): Modeling the seasonal variation of sea ice in the Labrador Sea with a coupled multicategory ice model and the Princeton ocean model. J. Geophys. Res., 105, 1153–1165.

    Google Scholar 

  • Zhang, J., B. Hibler, M. Steele and A. D. Rothrock (1998): Arctic ice-ocean modeling with and without climate restoring. J. Phys. Oceanogr., 28, 191–217.

    Google Scholar 

  • Zhang, J., A. D. Rothrock and M. Steele (2000): Recent changes in Arctic sea ice: the interplay between ice dynamics and thermodynamics. J. Climate, 13, 3099–3114.

    Google Scholar 

  • Zhang, X. and J. Zhang (2001): Heat and freshwater budget and pathways in the Arctic Mediterranean in a coupled ocean/sea-ice model. J. Oceanogr., 57, 207–234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Liu, Q., Jin, M. et al. A Coupled Ice-Ocean Model in the Pan-Arctic and North Atlantic Ocean: Simulation of Seasonal Cycles. J Oceanogr 61, 213–233 (2005). https://doi.org/10.1007/s10872-005-0033-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-005-0033-3

Keywords

Navigation