Skip to main content
Log in

Validation and Improvement of Satellite-Derived Surface Solar Radiation over the Northwestern Pacific Ocean

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The purpose of this study is to validate and improve satellite-derived downward surface shortwave radiation (DSSR) over the northwestern Pacific Ocean using abundant in situ data. The DSSR derivation model used here assumes that the reduction of solar radiation by clouds is proportional to the product of satellite-measured albedo and a cloud attenuation coefficient. DSSR is calculated from Geostationary Meteorological Satellite-5/Visible Infrared Spin-Scan Radiometer data in 0.05° × 0.05° grids. The authors first compare the satellite DSSR derived with a cloud attenuation coefficient table determined in past research with in situ values. Although the hourly satellite DSSR agrees well with land in situ values in Japan, it has a bias of +13∼+34 W/m2 over the ocean and the bias is especially large in the low latitudes. The authors then improve the coefficient table using the ocean in situ data. Usage of the new table successfully reduces the bias of the satellite DSSR over the ocean. The cloud attenuation coefficient for low-albedo cases over the ocean needs to be larger in the low latitudes than past research has indicated. Daily and hourly DSSR can be evaluated from the satellite data with RMS errors of 11–14% and 30–33%, respectively, over a wide region of the ocean by this model. It is also shown that the cloud attenuation coefficient over land needs to be smaller than over the ocean because the effect of the radiation reflected by the land surface cannot be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, K., T. Nagahama, T. Matsumoto, Y. Kuroda and M. Kawahara (2001): Error estimation of TRITON buoy meteorological sensors. Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan, 5 pp. On-line document available at: http://www.jamstec.go.jp/jamstec/TRITON/future/pdf/A4.pdf

    Google Scholar 

  • Bates, J. and C. Gautier (1989): Interaction between net shortwave flux and sea surface temperature. J. Appl. Meteor., 28, 43–51.

    Article  Google Scholar 

  • Chester, D., W. D. Robmson and L. W. Uccellini (1987): Optimized retrievals of precipitable water from the VAS “Split Windows”. J. Climate Appl. Meteor., 26, 1059–1066.

    Article  Google Scholar 

  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson and G. S. Young (1996): Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 3747–3764.

    Google Scholar 

  • Frouin, R., C. Gautier, K. B. Katsaros and R. J. Lind (1988): A comparison of satellite and empirical formula techniques for estimating insolation over the oceans. J. Appl. Meteor., 27, 1016–1023.

    Google Scholar 

  • Gautier, C. (1988): Surface solar irradiance in the central Pacific during Tropic Heat: Comparisons between in situ measurements and satellite estimates. J. Climate, 1, 600–608.

    Google Scholar 

  • Gautier, C. and M. Landsfeld (1997): Surface solar radiation flux and cloud radiative forcing for the atmospheric radiation measurement (ARM) Southern Great Plains (SGP): a satellite, surface observations, and radiative transfer model study. J. Atmos. Sci., 54, 1289–1307.

    Google Scholar 

  • Gautier, C., G. Diak and S. Masse (1980): A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteor., 19, 1005–1012.

    Google Scholar 

  • Iqbal, M. (1983): An Introduction to Solar Radiation. Academic Press, Canada, 390 pp.

    Google Scholar 

  • Kasten, F. (1966): A new table and approximate formula for relative optical air mass. Archiv fuer Meteorologie, Geophysik und Bioklimatologie, Serie B: Klimatologie, Umweltneteorologie, Strahlungforschung, 14, 206–223 (cited from Iqbal, 1983).

    Google Scholar 

  • Kawai, Y. and H. Kawamura (2002): Evaluation of the diurnal warming of sea surface temperature using satellite-derived marine meteorological data. J. Oceanogr., 58, 805–814.

    Google Scholar 

  • Kawamura, H., S. Tanahashi and T. Takahashi (1998): Estimation of insolation over the Pacific Ocean off the Sanriku coast. J. Oceanogr., 54, 457–464.

    Google Scholar 

  • Kizu, S. (1995): A study on thermal response of ocean surface layer to solar radiation using satellite remote sensing. Doctoral Thesis, Tohoku University, Sendai, Japan, 100 pp.

    Google Scholar 

  • Kuroda, Y. (2001): TRITON: Present status and future plan. Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan, 31 pp. On-line document available at: http://www.jamstec.go.jp/jamstec/TRITON/future/pdf/Status.pdf

    Google Scholar 

  • Lacis, A. A. and J. E. Hansen (1974): A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118–133.

    Google Scholar 

  • Macher, M. (1983): Parameterization of solar irradiation under clear skies. M.A.Sc. Thesis, University of British Columbia, Vancouver, Canada (cited from Iqbal, 1983).

    Google Scholar 

  • Meteorological Satellite Center (1997): The GMS User’s Guide. 3rd ed., Meteorological Satellite Center, Tokyo, 190 pp.

    Google Scholar 

  • Paltridge, G. W. and C. M. R. Platt (1976): Radiative Processes in Meteorology and Climatology. Elsevier, New York, 318 pp.

    Google Scholar 

  • Pinker, R. T., W. P. Kustas, I. Laszlo, M. S. Moran and A. R. Huete (1994): Satellite surface radiation budgets on basin scale in semi-arid regions. Water Resources Res., 30, 1375–1386.

    Google Scholar 

  • Pinker, R. T., R. Frouin and Z. Li (1995): A review of satellite methods to derive surface shortwave irradiance. Remote Sens. Environ., 51, 108–124.

    Google Scholar 

  • Stuart-Menteth, A. C., I. S. Robinson and P. G. Challenor (2003): A global study of diurnal warming using satellite-derived sea surface temperature. J. Geophys. Res., 108, doi:10.1029/2002JC001534.

    Google Scholar 

  • Tanahashi, S., H. Kawamura, T. Matsuura, T. Takahashi and H. Yusa (2001): A system to distribute satellite incident solar radiation in real-time. Remote Sens. Environ., 75, 412–422.

    Google Scholar 

  • Tarpley, J. D. (1979): Estimating incident solar radiation at the surface from geostationary satellite data. J. Appl. Meteor., 18, 1172–1181.

    Google Scholar 

  • Webster, P. J. and R. Lukas (1992): TOGA COARE: The coupled ocean-atmosphere response experiment. Bull. Am. Meteorol. Soc., 73, 1377–1416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimi Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, Y., Kawamura, H. Validation and Improvement of Satellite-Derived Surface Solar Radiation over the Northwestern Pacific Ocean. J Oceanogr 61, 79–89 (2005). https://doi.org/10.1007/s10872-005-0021-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-005-0021-7

Keywords

Navigation