Skip to main content

Advertisement

Log in

Energy landscapes and dynamics of ion translocation through membrane transporters: a meeting ground for physics, chemistry, and biology

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The dynamics of ion translocation through membrane transporters is visualized from a comprehensive point of view by a Gibbs energy landscape approach. The ΔG calculations have been performed with the Kirkwood–Tanford–Warshel (KTW) electrostatic theory that properly takes into account the self-energies of the ions. The Gibbs energy landscapes for translocation of a single charge and an ion pair are calculated, compared, and contrasted as a function of the order parameter, and the characteristics of the frustrated system with bistability for the ion pair are described and quantified in considerable detail. These calculations have been compared with experimental data on the ΔG of ion pairs in proteins. It is shown that, under suitable conditions, the adverse Gibbs energy barrier can be almost completely compensated by the sum of the electrostatic energy of the charge–charge interactions and the solvation energy of the ion pair. The maxima in ΔGKTW with interionic distance in the bound H+ – A charge pair on the enzyme is interpreted in thermodynamic and molecular mechanistic terms, and biological implications for molecular mechanisms of ATP synthesis are discussed. The timescale at which the order parameter moves between two stable states has been estimated by solving the dynamical equations of motion, and a wealth of novel insights into energy transduction during ATP synthesis by the membrane-bound FOF1-ATP synthase transporter is offered. In summary, a unifying analytical framework that integrates physics, chemistry, and biology has been developed for ion translocation by membrane transporters for the first time by means of a Gibbs energy landscape approach.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

All are included in the manuscript.

Code availability

Not applicable.

Abbreviations

A :

Anion

a :

Hydrated ion radius (m)

d :

Distance between c-rotor and a-stator in FO portion of ATP synthase (m)

E :

Local electrical field (Vm1)

E :

Enzyme

E :

Young’s modulus (kg m1 s2)

ΔG :

Gibbs energy change (kJ mol1)

ΔG sol :

Solvation Gibbs energy change (kJ mol1)

ΔG desolvation :

Desolvation Gibbs energy change (kJ mol1)

H+ :

Proton

H+ − A :

Proton–anion charge pair

I :

Moment of inertia (kg m2)

k :

Boltzmann constant (= 1.38 × 1023 J K1)

k :

Torsional spring constant of γ-subunit in F1 (kg m2 s2)

k":

Torsional spring constant of c-subunit α-helix in FO (kg m2 s2)

L :

Characteristic length (m)

L :

Length of α-helix (m)

l :

Membrane thickness (m)

l :

Distance within the c-ring of FO (m)

m :

Mass (kg)

n :

Number of c-subunits in the c-ring of FO

P n :

Legendre polynomial of degree n

Δp :

“Protonmotive force” (kJ mol1)

q :

Charge (C)

R :

Inter-ionic distance within H+ − A charge pair (m)

R :

Radius of α-helix (m)

r :

Radial position (m)

r :

Radial distance of a single charged species from the center (m)

T :

Temperature (K)

t :

Time (s)

U :

Stored elastic energy (kJ mol1)

z :

Distance along membrane access channel (m)

γ :

γ-Subunit of FOF1-ATP synthase

γ :

εWm

ε m :

Dielectric constant of membrane

ε w :

Dielectric constant of water

ζ :

Frictional coefficient (kg m2 s1)

θ :

Angle subtended by the rotating c-subunit with the center of the c-ring in FO (°)

θ :

Angle swept by the imaginary line joining the trailing c-rotor residue and the upper a-stator residue in FO with respect to the equilibrium position (°)

θ″ :

Angle of rotation about the axis of the c-subunit (°)

λ :

Inter-ionic length scale (m)

λ D :

Debye length scale (m)

ρ :

Charge density (C m3)

σ :

Poisson’s ratio

τ m,d :

Driving electrostatic motor torque in FO (kg m2 s2)

τ m,r :

Resisting electrostatic motor torque in FO (kg m2 s2)

τ m,net :

Net electrostatic motor torque in FO (kg m2 s2)

Φ:

Electrical potential (V)

φ :

Delocalized electrical potential (V)

ψ :

Local electrical potential (V)

c:

Charges in water

D:

Debye

Eq:

Equivalent

m:

Membrane

max:

Maximum

s:

Solution

w:

Water

*:

High-energy or transition state of intermediate

Arg:

Arginine

Asp:

Aspartic acid

ATP:

Adenosine triphosphate

Glu:

Glutamic acid

His:

Histidine

DASS:

Divalent anion sodium symporter

K:

Kirkwood

KTW:

Kirkwood–Tanford–Warshel

References

  1. Gould, S.J.: Punctuated Equilibrium. Harvard University Press, Cambridge, MA, USA (2007)

    Google Scholar 

  2. Moran, N.A.: Accelerated evolution. Proc. Natl. Acad. Sci. USA 93, 2873–2878 (1996)

    ADS  Google Scholar 

  3. Romero, P.A., Arnold, F.H.: Exploring protein fitness landscapes by directed evolution. Nature Rev. Mol. Cell Biol. 10, 866–876 (2009)

  4. Zhang, Q.C., et al.: Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333, 1764–1767 (2011)

    ADS  Google Scholar 

  5. Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C.: Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975)

    Google Scholar 

  6. Ansari, A., Berendzen, J., Bowne, S.F., Frauenfelder, H., Iben, I.E.T., Sauke, T.B., Shyamsunder, E., Young, R.D.: Protein states and proteinquakes. Proc. Natl. Acad. Sci. USA 82, 5000–5004 (1985)

    ADS  Google Scholar 

  7. Janke, W.: Rugged Free Energy Landscapes: Common Computational Approaches to Spin Glasses, Structured Glasses and Biological Macromolecules. Springer, Berlin (2010)

  8. Bryngelson, J.D., Wolynes, P.G.: Spin-glasses and the statistical-mechanics of protein folding. Proc. Natl. Acad. Sci. USA 84, 7524–7528 (1987)

    ADS  Google Scholar 

  9. Shakhnovich, E.: Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Chem. Rev. 106, 1559–1588 (2006)

    Google Scholar 

  10. Frauenfelder, H.: Energy landscape and dynamics of biomolecules. J. Biol. Phys. 31, 413–416 (2005)

    Google Scholar 

  11. Holmes-Cerfon, M., Gortler, S.J., Brenner, M.P.: A geometrical approach to computing free-energy landscapes from short-ranged potentials. Proc. Natl. Acad. Sci. USA 109, E5–E14 (2012)

    Google Scholar 

  12. Hénin, J., Fiorin, G., Chipot, C., Klein, M.L.: Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J. Chem. Theory Comput. 6, 35–47 (2010)

    Google Scholar 

  13. Radak, B.K., Phillips, J.C., Jiang, W., Jo, S., Kalé, L., Schulten, K., Roux, B.: Free energy landscapes of membrane transport proteins. Technical Report ANL/ALCF/ESP–17/11 for the Argonne Leadership Computing Facility Theta Early Science Program (Williams, T.J., Balakrishnan, R., Eds.), Argonne National Laboratory (2017)

  14. Selvam, B., Mittal, S., Shukla, D.: Free energy landscape of the complete transport cycle in a key bacterial transporter. ACS Cent. Sci. 4, 1146–1154 (2018)

    Google Scholar 

  15. Lu, H., Marti, J.: Cellular absorption of small molecules: free energy landscapes of melatonin binding at phospholipid membranes. Sci. Rep. 10, 9235 (2020)

    ADS  Google Scholar 

  16. Crossley, J.A. et al.: Energy landscape steering in SecYEG mediates dynamic coupling in ATP driven protein translocation. bioRxiv preprint. https://doi.org/10.1101/793943 (2020)

  17. Bacchin, P.: Membranes: a variety of energy landscapes for many transfer opportunities. Membranes 8, 10 (2018)

    Google Scholar 

  18. Kornberg, R.D., McNamee, M.G., McConnell, H.M.: Measurement of transmembrane potentials in phospholipid vesicles. Proc. Natl. Acad. Sci. USA 69, 1508–1513 (1972)

    ADS  Google Scholar 

  19. Burykin, A., Warshel, A.: What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys. J. 85, 3696–3706 (2003)

    ADS  Google Scholar 

  20. Shirai, O., Yoshida, Y., Matsui, M., Maeda, K., Kihara, S.: Voltammetric study on the transport of ions of various hydrophobicity types through bilayer lipid membranes composed of various lipids. Bull. Chem. Soc. Japan 69, 3151–3162 (1996)

    Google Scholar 

  21. Laforge, F.O., Sun, S., Mirkin, M.V.: Shuttling mechanism of ion transfer at the interface between two immiscible liquids. J. Am. Chem. Soc. 128, 15019–15025 (2006)

    Google Scholar 

  22. Soumpasis, D.M., Jovin, T.M.: Computation of Biomolecular Structures: Achievements. Problems and Perspectives. Springer, Berlin (1993)

    Google Scholar 

  23. Zhang, J., Kamenev, A., Shklovskii, B.I.: Conductance of ion channels and nanopores with charged walls: a toy model. Phys. Rev. Lett. 95, 1488101 (2005)

    Google Scholar 

  24. Mulkidjanian, A.Y.: Proton in the well and through the desolvation barrier. Biochim. Biophys. Acta 1757, 415–427 (2006)

    Google Scholar 

  25. Morelli, A.M., Ravera, S. Calzia, D., Panfoli, I.: An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol. 9, 180221 (2019)

  26. Williams, R.J.P.: The problem of proton transfer in membranes. J. Theor. Biol. 219, 389–396 (2002)

    ADS  Google Scholar 

  27. Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445–502 (1966)

    Google Scholar 

  28. Rohatgi, H., Saha, A., Nath, S.: Mechanism of ATP synthesis by protonmotive force. Curr. Sci. 75, 716–718 (1998)

    Google Scholar 

  29. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers. Springer, Berlin (2008)

  30. Nath, S.: The molecular mechanism of ATP synthesis by F1F0-ATP synthase: a scrutiny of the major possibilities. Adv. Biochem. Eng. Biotechnol. 74, 65–98 (2002)

    Google Scholar 

  31. Jain, S., Murugavel, R., Hansen, L.D.: ATP synthase and the torsional mechanism: resolving a 50-year-old mystery. Curr. Sci. 87, 16–19 (2004)

    Google Scholar 

  32. Villadsen, J., Nielsen, J., Lidén, G.: Bioreaction Engineering Principles, 3rd edn. Springer, New York (2011). (Chapter 4)

    Google Scholar 

  33. Wray, V.: Commentary on “Oxidative phosphorylation revisited.” Biotechnol. Bioeng. 112, 1984–1985 (2015)

    Google Scholar 

  34. Nath, S.: Molecular mechanisms of energy transduction in cells: engineering applications and biological implications. Adv. Biochem. Eng. Biotechnol. 85, 125–180 (2003)

  35. Bal, W., Kurowska, E., Maret, W.: The final frontier of pH and the undiscovered country beyond. PLoS ONE 7, e45832 (2012).

  36. Żurawik, T.M. et al.: Revisiting mitochondrial pH with an improved algorithm for calibration of the ratiometric 5(6)-carboxy-SNARF-1 probe reveals anticooperative reaction with H+ ions and warrants further studies of organellar pH. PLoS ONE 11, e0161353 (2016)

  37. Nath, S.: The torsional mechanism of energy transduction and ATP synthesis as a breakthrough in our understanding of the mechanistic, kinetic and thermodynamic details. Thermochim. Acta 422, 5–17 (2004)

    Google Scholar 

  38. Warshel, A., Russell, S.T.: Calculations of electrostatic interactions in proteins and in solutions. Q. Rev. Biophys. 17, 283–422 (1984)

    Google Scholar 

  39. von Kitzing, E., Soumpasis, D.M.: Electrostatics of a simple membrane model using Green’s functions formalism. Biophys. J. 71, 795–810 (1996)

    Google Scholar 

  40. Zhang, J., Kamenev, A., Shklovskii, B.I.: Ion exchange phase transitions in water-filled channels with charged walls. Phys. Rev. E 73, 051205 (2006)

  41. Bonthuis, D.J., Zhang, J., Hornblower, B., Mathe, J., Shklovskii, B.I., Meller, A.: Self-energy-limited ion transport in subnanometer channels, Phys. Rev. Lett. 97, 128104 (1996)

  42. Chen, H., Ilan, B., Wu, Y., Zhu, F., Schulten, K., Voth, G.A.: Charge delocalization in proton channels: the aquaporin channels and proton blockage. Biophys. J. 92, 46–60 (2007)

    ADS  Google Scholar 

  43. Ivanischev, V.V.: Problems of the mathematical description of the chemiosmotic theory. News Tula State Univ. Natl. Sci. 3, 129–135 (2018)

    Google Scholar 

  44. Levy, W.B., Calvert, V.G.: Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number. Proc. Natl. Acad. Sci. USA 118, e2008173118 (2021)

  45. Karapetyan, L., Mikoyan, G., Vassilian, A., Valle, A., Bolivar, J., Trchounian, A., Trchounian, K.: Escherichia coli Dcu C4-dicarboxylate transporters dependent proton and potassium fluxes and FOF1-ATPase activity during glucose fermentation at pH 7.5. Bioelectrochemistry 141, 107867 (2021)

  46. Bose, H.S., Marshall, B., Debnath, D.K., Perry E.W., Whittal, R.M.: Electron transport chain complex II regulates steroid metabolism. iScience 23, 101295 (2020)

  47. Nath, S.: Entropy production and its application to the coupled nonequilibrium processes of ATP synthesis. Entropy 21, 746 (2019)

    MathSciNet  Google Scholar 

  48. Nath, S.: Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory. Biophys. Chem. 230, 45–52 (2017)

  49. Nath, S.: Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis. J. Bioenerg. Biomembr. 42, 301–309 (2010)

  50. Nath, S.: Analysis of molecular mechanisms of ATP synthesis from the standpoint of the principle of electrical neutrality. Biophys. Chem. 224, 49–58 (2017)

    Google Scholar 

  51. Nath, S.: Optimality principle for the coupled chemical reactions of ATP synthesis and its molecular interpretation. Chem. Phys. Lett. 699, 212–217 (2018)

    ADS  Google Scholar 

  52. Nath, S., Rohatgi, H., Saha, A.: The torsional mechanism of energy transfer in ATP synthase. Curr. Sci. 77, 167–169 (1999)

    Google Scholar 

  53. Nath, S., Jain, S.: The detailed molecular mechanism of ATP synthesis in the F0 portion of ATP synthase reveals a non-chemiosmotic mode of energy coupling. Thermochim. Acta 394, 89–98 (2002)

    Google Scholar 

  54. Nath, S.: The new unified theory of ATP synthesis/hydrolysis and muscle contraction, its manifold fundamental consequences and mechanistic implications and its applications in health and disease. Int. J. Mol. Sci. 9, 1784–1840 (2008)

    Google Scholar 

  55. Nath, S.S., Nath, S.: Energy transfer from adenosine triphosphate: Quantitative analysis and mechanistic insights. J. Phys. Chem. B 113, 1533–1537 (2009)

    Google Scholar 

  56. Kirkwood, J.G.: Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys. 2, 351–361 (1934)

    ADS  MATH  Google Scholar 

  57. Tanford, C., Kirkwood, J.G.: Theory of protein titration curves. I. General equations for impenetrable spheres. J. Am. Chem. Soc. 79, 5333–5339 (1957)

  58. Born, M.: Volumen und Hydratationswärme der Ionen. Z. Phys. 1, 45–48 (1920)

    ADS  Google Scholar 

  59. Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)

    Google Scholar 

  60. Shockley, W.: The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949)

    Google Scholar 

  61. Warshel, A., Schlosser, D.W.: Electrostatic control of the efficiency of light-induced electron transfer across membranes. Proc. Natl. Acad. Sci. USA 78, 5564–5568 (1981)

    ADS  Google Scholar 

  62. Nath, S.: The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation. Biophys. Chem. 219, 69–74 (2016)

    ADS  Google Scholar 

  63. Nath, S.: Modern theory of energy coupling and ATP synthesis. Violation of Gauss’s law by the chemiosmotic theory and validation of the two-ion theory. Biophys. Chem. 255, 106271 (2019)

  64. Mitchell, P.: Bioenergetic aspects of unity in biochemistry: evolution of the concept of ligand conduction in chemical, osmotic and chemiosmotic reaction mechanisms. In: Semenza, G. (ed.) Of Oxygen, Fuels and Living Matter, Part 1, pp. 30–56. John Wiley, New York (1981)

    Google Scholar 

  65. Williams, R.J.P.: Some unrealistic assumptions in the theory of chemi-osmosis and their consequences. FEBS Lett. 102, 126–132 (1979)

    Google Scholar 

  66. Nath, S.: Consolidation of Nath’s torsional mechanism of ATP synthesis and two-ion theory of energy coupling in oxidative phosphorylation and photophosphorylation. Biophys. Chem. 257, 106279 (2020)

  67. Nath, S.: Coupling mechanisms in ATP synthesis: rejoinder to “Response to molecular-level understanding of biological energy coupling and transduction”. Biophys. Chem. 272, 106579 (2021)

  68. Kühlbrandt, W., Davies, K.M.: Rotary ATPases: a new twist to an ancient machine. Trends Biochem. Sci. 41, 106–115 (2016)

    Google Scholar 

  69. Schulz, S., Iglesias-Cans, M., Krah, A., Yildiz, Ö., Leone, V., Matthies, D., Cooke, G.M., Faraldo-Gómez, J.D., Meier, T.: A new type of Na+-driven ATP synthase with a two-carboxylate ion-coupling motif. PLoS Biol. 11, e1001596 (2013). https://doi.org/10.1371/journal.pbio.1001596

    Article  Google Scholar 

  70. Pinke, G., Zhou, L., Sazanov, L.A.: Cryo-EM structure of the entire mammalian F-type ATP synthase. Nature Str. Mol. Biol. 27, 1077–1085 (2020)

    Google Scholar 

  71. Abrahams, J.P., Leslie, A.G.W., Lutter, R., Walker, J.E.: Structure at 2.8 Å resolution of F1–ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994)

  72. Nath, S., Bowers, J.S., Prud’homme, R.K.: Orientation and relaxation of nonlinear elastic dumbbells in electric fields: modeling transient electric birefringence. J. Chem. Phys. 89, 5943–5949 (1988)

  73. Nath, S., Siddiqui, R.S.: Transient electric birefringence of flexible polymers: orientation and relaxation dynamics. J. Chem. Phys. 103, 3212–3219 (1995)

    ADS  Google Scholar 

  74. Mandadapu, K.K., Nirody, J.A., Berry, R.M., Oster, G.: Mechanics of torque generation in the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 112, E4381–E4389 (2015)

    ADS  Google Scholar 

  75. Kumar, S., Bansal, M.: Geometrical and sequence characteristics of α-helices in globular proteins. Biophys. J. 75, 1935–1944 (1998)

    ADS  Google Scholar 

  76. Rastogi, V.K., Girvin, M.E.: Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402, 263–268 (1999)

    ADS  Google Scholar 

  77. Kumar, S., Nussinov, R.: Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys. J. 83, 1595–1612 (2002)

    ADS  Google Scholar 

  78. Bosshard, H.R., Zürrer, M.: The conformation of cytochrome in solution. Localization of a conformational difference between ferri- and ferrocytochrome c on the surface of the molecule. J. Biol. Chem. 255, 6694–6699 (1980)

  79. Kilmartin, J.V., Fogg, J.H., Perutz, M.F.: Role of C-terminal histidine in the alkaline Bohr effect of human haemoglobin. Biochemistry 19, 3189–3193 (1980)

    Google Scholar 

  80. Parsons, S.M., Raftery, M.A.: Ionization behavior of the catalytic carboxyls of lysozyme. Effects of ionic strength. Biochemistry 11, 1623–1629 (1972)

    Google Scholar 

  81. Rees, D.C.: Experimental evaluation of the effective dielectric constant in proteins. J. Mol. Biol. 141, 323–326 (1980)

    Google Scholar 

  82. Nath, S., Villadsen, J.: Oxidative phosphorylation revisited. Biotechnol. Bioeng. 112, 429–437 (2015)

    Google Scholar 

  83. Mancusso, R., Gregorio, G.G., Liu, Q., Wang, D­-N.: Structure and mechanism of a bacterial sodium­dependent dicarboxylate transporter. Nature 491, 622–626 (2012)

  84. Sauer, D.B., Wang, B., Sudar, J.C., Song, J., Marden, J., Rice, W.J., Wang, D­N.: The ups and downs of elevator-­type di­/tricarboxylate membrane transporters. FEBS J. 1–9 (2021). https://doi.org/10.1111/febs.16158

  85. Sauer, D.B., Trebesch, N., Marden, J.J., Cocco, N., Song, J., Koide, A., Koide, S. Tajkhorshid, E., Wang, D­-N.: Structural basis for the reaction cycle of DASS dicarboxylate transporters. eLife 9, e61350 (2020). https://doi.org/10.7554/eLife.61350

  86. Etzold, C., Deckers-Hebestreit, G., Altendorf, K.: Turnover number of Escherichia coli F0F1 ATP synthase for ATP synthesis in membrane vesicles. Eur. J. Biochem. 243, 336–343 (1997)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the very thoughtful and constructive comments of both referees that have greatly contributed to improve overall readability and the presentation of many detailed aspects in the paper.

Author information

Authors and Affiliations

Authors

Contributions

The author conceived the study, designed the research program, performed research, analyzed and interpreted the data, and wrote the paper.

Corresponding author

Correspondence to Sunil Nath.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: The Revolutionary Impact of Landscapes in Biology

Guest Editors: Robert Austin, Shyamsunder Erramilli, Sonya Bahar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, S. Energy landscapes and dynamics of ion translocation through membrane transporters: a meeting ground for physics, chemistry, and biology. J Biol Phys 47, 401–433 (2021). https://doi.org/10.1007/s10867-021-09591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-021-09591-8

Keywords

Navigation